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Abstract — The science of sediment toxicology essentially began in the late 1970s. It was largely a
product of dredging concerns and recognition of widespread contamination of sediments. During
the past few years, sediment toxicity research activity has increased dramatically. Currently, most
tests are of an acute nature with fewer available for determining sublethal endpoints of chronic tox-
icity. Test systems of single and multiple species have included most levels of biological organiza-
tion in aquatic ecosystems and have been conducted in the laboratory on whole sediments, interstitial
waters, elutriates, or other extractable fractions under a wide variety of conditions. Evaluations of
methodological effects and comparisons with in situ toxicity using surrogate test species and indig-
enous communities have, on occasion, shown significant differences in test responses. These dif-
ferences may be attributed to laboratory-controlled parameters (e.g., light, species, life stage,
exposure conditions, test phase, spiking method); sampling and laboratory-induced disruption of
sediment integrity; alteration of toxicant partitioning due to manipulations and temporal effects;
and failure to recognize other influencing ecosystem variables (e.g., organism niche and life cycle,
sediment partitioning and gradient dynamics, physicochemical and biological process integration,
biotic and abiotic disturbances, micro- and macrobiota patches, food-web interactions). Optimiz-
ing and standardizing test methods will require further studies of these variables to improve inter-
laboratory comparisons and ecosystem validity. Despite the many unknowns that exist, a variety
of sediment toxicity tests have been effectively used in assessing toxicant contamination by measuring
the bioavailable fraction of the in-place pollutants. The optimal assays vary with the study and its
objectives. Intergrative studies using several chemical, community, and toxicity measures are cur-
rently the most effective at defining ecosystem perturbations.
Freshwater Acute Chronic

Keywords — Sediments Sediment toxicity

Assessments

This review will focus on the relatively short
history of freshwater sediment toxicity testing from
a multitrophic-level perspective and also attempt to
define the critical variables both in the environment
and in the sampling and test design that have been
shown, or thought, to influence the assessment
process. As in all studies of aquatic ecosystems, the
integrating factors are many and complex, cross-
ing multiple compartments, whether or not they
are recognized by the investigator. The test re-
sponse of an aquatic species, community, or mi-
crocosm is meaningless if the response initiator is
an unrecognized artifact of experimental manipu-
lation. Many of the issues reviewed are also rele-
vant to sediment-related research dealing with
behavior [1], bioaccumulation [2], and genotoxic-
ity (biomarker) studies [3] and in sediment studies
of marine systems [4-6). In marine systems there
are, however, some important differences that may
affect sediment toxicity and its assessment, includ-
ing ionic strength-composition, salinity gradients,

lower organic carbon, species selection and test re-
quirements, and hydrodynamics. The review has
been divided into nine subject areas: history, sed-
iment environment, ecosystem integration, system
variance, sediment sampling and manipulation, as-
say exposure conditions, toxicity assays (arranged
phylogenetically), field validation, and current
applications.

THE BEGINNINGS

The science of aquatic toxicology consisted of
only a handful of investigators in the 1950s with
previous pioneering works by Penez and Adams
(1863), Powers (1917), Belding (1927), Carpenter
(1930), Ellis (1937), and Jones (1938) [7]. The sci-
entific community remained small, as did regula-
tory interest, until the early 1970s, when concerns
in the United States over pollution resulted in the
passage of the Clean Water Act (CWA) (PL 92-500)
and the formation of the U.S. Environmental Pro-
tection Agency (EPA). Before that, the problem
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of elevated levels of contaminants in dredged sed-
iments was recognized and caused the Federal Wa-
ter Quality Administration to develop a few bulk
(whole) sediment criteria known as the Jensen cri-
teria [8]. The Marine Protection, Research and
Sanctuaries Act (PL-92-532) mandated the EPA
and U.S. Army Corps of Engineers {COE}) to de-
velop methods to evaluate dredge and fill material.
The COE therefore embarked on a multimillion
dollar Dredged Material Research Program that re-
sulted in numerous technical reports addressing
sediment-associated contaminant availability [8].
Significant contributions to the science were made
in resulting studies of partitioning of metals in
sediments; development of the elutriate technique
(water exchangeable fraction) to mimic dredging-
induced desorption of sediment-bound constitu-
ents; and temporal and spatial effects of dredging
on water quality, fish, invertebrates, and photosyn-
thetic organisms [9]. In 1977, the COE published
guidance for ecological evaluations of dredged ma-
terial, which included acute toxicity testing of whole
sediment, suspended sediments, and elutriate frac-
tions using three types of resident species [10]. It
became evident from bulk sediment chemical data
collected in a few locations within each state dur-
ing the 1970s, as part of the CWA’s monitoring
programs, that many sites were contaminated with
extremely high levels of metals, metalloids, pesti-
cides, and synthetic organics [11-13]. Recognition
of the widespread sediment contamination problem
likely led to the increase in freshwater whole sedi-
ment and elutriate testing [14-28] and development
of various bulk sediment criteria to evaluate de-
grees of contamination [12,29-31]. Public, regu-
latory, and research interest, however, focused
primarily on the water column and organism
health-water quality relationships until the 1980s.

Unfortunately, several of the initial sediment
toxicity studies conducted during the 1970s and
1980s were reported only in the “gray” literature
[10,14,16,17,27] (that is, technical reports) and
thereby were not widely read by the scientific com-
munity. Early assays typically used adult life stages
and consisted of short-term (acute) exposures with
sample collection, manipulation, exposure condi-
tions, or sample characteristics being relatively un-
defined [10,14-16,18,19,23,24,27,28]. Correlations
between organism mortality and bulk sediment
contaminant levels were noted in some studies with
some sensitive species such as Daphnia magna and
the burrowing mayfly, Hexagenia limbata, but not
in others {16-24,27,28,32].
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During the late 1970s and early 1980s it became
apparent that the physical, chemical, and biologi-
cal relationships between the sediment environment
and associated contaminants were complex and
variable and not easily defined or managed via se-
lective extractions, elutriate toxicity testing, or bulk
sediment criteria [8,33-35]. This widespread recog-
nition [12] led to heightened regulatory and re-
search activity into better ways to assess and
manage sediment contamination. In the 1970s, a
large amount of research was focused on sediment
contaminant transport and nutrient dynamics [36-
38]. In 1981, sediment quality indicators were pro-
posed by the EPA Region VI office (F.E. Phillips,
Deputy Regional Administrator; Region VI Sedi-
ment Quality Indicators Memorandum of August
19, 1981, to J. Hernandez, Deputy Administrator,
U.S. Environmental Protection Agency; Dallas,
TX) whereby interstitial water contaminant levels
were compared to the EPA’s water quality criteria.
This approach suggested that interstitial water was
a primary route of uptake by aquatic organisms
and utilized the extensive toxicological data base
incorporated into the water quality criteria. Though
the data base is comprised primarily of water col-
umn organisms, the comparison was suggested as
valid on the basis of water-sediment interactions.
This relationship is still a point of debate. The
proposed approach, however, was rejected by As-
sistant Administrator John Hernandez (J.W. Her-
nandez, Jr., Deputy Administrator; Region VI
Sediment Quality Indicators Memorandum of Oc-
tober 16, 1981, to F.E. Phillips, Deputy Regional
Administrator, U.S. Environmental Protection
Agency; Washington, DC). Shortly thereafter, the
EPA Criteria and Standards Division began a sed-
iment criteria development program that focused
on equilibrium partitioning of contaminants in the
interstitial water. This approach also utilized the
water quality criteria as a comparison, but sediment
concentrations were pormalized with sediment/
water partitioning coefficients [39]. Nonpolar or-
ganic (e.g., Kepone) bioavailability in sediments
was shown to be driven by total organic carbon
(TOC) concentrations [40], and more recently it
has been suggested that metal bioavailability may
be controlled by acid volatile sulfide (AVS) rela-
tionships [41].

The increased sediment research activity in the
1980s followed the work of Gannon and Beeton
[14,15], who tested preference-avoidance of Pon-
toporeia sp., Gammarus sp., and Chironomus sp.
larvae with contaminated sediments and found no
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relationship. Magnuson et al. [16], Prater and An-
derson [18,19], Birge et al. {17], and Wentsel et al.
[20-22] conducted whole sediment assays in the
late 1970s. In 1977, Prater and Anderson published
a modified method of Fremling [42] to determine
if freshwater dredged sediments were toxic [18,19].
Their system consisted of a recirculating aquarium
in which dredged sediments were placed and over-
lain with site water. Organisms (D. magha, Asellus
communis [isopod}, Pimephales promelas, and
H. limbata) were then exposed in the aquarium
for 2 to 4 d. Poor replication and correlation with
contamination might have resulted from sediment
freezing, lack of feeding, and failure to use early
life stages. Wentsel et al. [20-22] showed that the
growth and emergence of Chironomus tentans re-
sponded to metal-contaminated sediments. Birge
et al. [17] exposed amphibians and fish embryos to
metal-contaminated sediments for 4 to 10 d post-
hatching and showed embryonic mortality and ter-
atogenesis paralleled contaminant levels.

The increase in research is shown in Figure 1,
where a clear trend of heightened activity is evi-
denced by publications in this journal, Environ-
mental Toxicology and Chemisiry. Only recently
have the numbers become significant, with 31% of
the 148 sediment-related and 64% of the sediment
toxicity studies having been published since 1988.
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Other sediment-related reviews have addressed
freshwater toxicity testing [9,43-46]. The useful-
ness of sediment toxicity tests in the assessment
and management of contaminated sediments has
now been well documented [47,48]. However, a se-
rious need exists to develop detailed standardized
sediment toxicity tests [35] and better understand
assay responses, their significance, and ecosystem
relevance.

THE SEDIMENT ENVIRONS

The holistic (as opposed to the “reductionist”)
approach has been promoted recently [47,49] as
the preferred method of studying aquatic ecosys-
tems. Based on an abundance of sediment-related
reductionist research on basic physical, chemical,
and biological processes and considering the dy-
namics of stream [50-52] and lake [53,54] ecology,
it is apparent that the holistic approach should be
utilized when evaluating the sediment environs.
Many studies have failed to recognize that a mul-
titude of physical, chemical, and biological (micro-
and macrobenthic) processes are integrated in the
sediment as dynamic, yet structured, gradients of-
ten occurring on small spatial scales of microns to
millimeters and temporal scales of minutes to
months [50,511. Given this reality it is questionable
whether destruction of the sediment integrity via
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Fig. 1. Numbers of papers published in Environmental Toxicology and Chemistry dealing with sediments (open bar)
and sediment toxicity testing (closed bar). 1982 was year one of publication (Vol. 1).
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grab sampling will consistently allow laboratory
studies of sediments that can be realistically extrap-
olated to in situ conditions.

Partitioning dynamics

Metal and metalloid dynamics between sedi-
ments and interstitial and overlying waters are par-
ticularly complex. Though many of the factors that
control partitioning of organic chemicals are sim-
ilar, there are important differences such as the in-
fluence of organic carbon on partitioning of
nonpolar compounds [40]. For a review of organic
chemical partitioning, see Di Toro et al. [55]. The
movement of metals, their availability, and possi-
ble toxicity are influenced by chemical and physi-
cal reactions and factors such as oxygen/redox
gradients, pH, temperature, adsorption, sedimen-
tation, complexation, precipitation, and grain size
[56]. In addition, a variety of common sediment
bacterial communities can metabolize and alter
metal/metalloid valence states via oxidation-reduc-
tion reactions, thereby altering chemical fate and
toxicity {57,58]. Release of metals from sediments
to water has been investigated primarily in dredg-
ing effect-related studies. There is little release of
metals from reduced sediments in oxygenated wa-
ters during dredging operations [59]. Release is
more likely after the sediments have been redepos-
ited [59]. However, clearly dominating mechanisms
do not appear to control all freshwater systems.
Salomons et al. [60] observed that Cd is released
from anoxic marine sediments into oxic water, but
metals were also sorbed from oxic waters to fresh-
water sediments. Metal concentrations in water
have been shown to decrease by four orders of
magnitude within 1 h of dredging [57,59,61,62].
Any metals released from anoxic dredged sedi-
ments tend to adsorb onto freshly precipitated
Fe/Mn oxyhydroxides [8,56,59,61,63-65]. This ox-
idation and release of sulfide-bound Cd and sub-
sequent readsorption to oxyhydroxides occur in
less than an hour [66,67]. Jenne and Zachara [68]
state that a significant portion of dissolved metals
is adsorbed irreversibly to solids within several
hours. This suggests that studies on the bioavail-
able reversible fraction should be conducted after
this initial period. However, with hydrophobic or-
ganics, equilibrium between the water and sediment
phases may take days to yecars to reach equilibrium
[69,701.

The rates of exchange (e.g., desorption) for
many metals (Fe**, Zn?*, Ni**, Cu**, As**, Cd*h)
are slow [57,59,61,62}. The maximum remobiliza-
tion rate of Cd after dredging occurred in two to
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four weeks, with maximum release after one month
[66]. Remobilization (desorption} is stimulated by
bacterial decomposition of substrates/ligands and
formation of soluble organic compounds [56,66].
Peaks in water column metal concentration have
been correlated with organic matter decomposition
during the vear, low flow conditions, and initial
storm-water flushing [56]. Higher levels of Cd have
been observed in oxic sediments overlying anoxic
sediments, possibly due to sulfide removal [71].
This supports the AVS partitioning results with Cd
[41].

Metals are partitioned in sediments in many
forms as soluble free ions, soluble organic (low-
molecular-weight humic) and inorganic complexes,
easily exchangeable ions, precipitates of metal hy-
droxides, precipitated with colloidal ferric and
manganic oxyhydroxides, insoluble organic com-
plexes, insoluble sulfides, and residual forms [59].
The residual fraction serves as the matrix vehicle
[72] and is associated with labile components (e.g.,
carbonates, amorphous aluminosilicates, organic
matter) [73], which are coated with iron/manga-
nese oxides and organic matter, This variable coat-
ing serves as an active sorption site for metals [56].

Free metal (e.g., Cu®*) is generally thought to
possess the greatest toxicity [74-81], so it is impor-
tant to understand binding dynamics’ (such as
rates) controlling conditions (such as pH, Eh) and
sorption/desorption properties. In some sediments,
sorption of metals is driven by amorphic oxides of
Fe, Mn, and reactive particulate organic carbon
[8,68]. Amorphic oxides of Si and Al as well as
clay and zeolite minerals are particularly important
sorbants for anionic metals and metalloids [8,68].
Use of TOC to determine sorption potential for
metals is inappropriate because the aluminosilicate
or carbonate coatings may isolate portions of the
particulate organic carbon from the aqueous phase,
thus making it “nonreactive” [68]. Manganese 0x-
ides are highly reactive, strongly sorb many ions,
are involved in many redox reactions, and are com-
mon in sediments, thereby influencing mobility
and fate of many pollutants [82]. Mn** and Fe**
adsorb As>* and are primary electron acceptors in
its oxidation to As®™, a less toxic form. Mn** can
oxidize As** and As>* within 48 h [62]. Higher
soluble As concentrations in soils are related to sol-
ublc Fe?* [83]. Arsenic and Se are readily bio-
methylated and demethylated [58,84] to more or
less toxic/available forms. Good correlations have
been observed in bivalve tissue between As/Fe and
Pb/Fe ratios and readily extractable Fe from sed-
iments [85,86].
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Another factor controlling partitioning is pH.
Adsorption of Cd is easily affected between pH 7
and 9 [61], which affects formation of CdCO,
precipitates {81]. pH and Eh changes can alter iron
solubility by three orders of magnitude but rarely
change the valence states [59]. Fe and Mn can de-
sorb faster than Cu and Zn, which are insensitive
to pH and oxygen changes [67].

Predicting partitioning of metals (and thus bio-
availability) is difficult [56,68,69,87] due to the
myriad of possible undefined processes that may
simultaneously reduce and increase availability. For
example, reduced sediments have shown release of
Pb, Cu, and Fe while Zn and Hg decreased in
overlying waters [59,64,88], and oxidized sediments
released Cd, Cu, Pb, and Zn while Fe decreased
[59,89]. The concentration of metal observed in in-
terstitial waters is dependent, to a large degree, on
sorption/precipitation processes. The process de-
pends on the metal and the environment. Adsorp-
tion is complicated, being related to the type of
solid (e.g., detrital matter, sand, clay), metal and
solids concentration, metal speciation, and surface
property changes resulting from interactions such
as coagulation. In addition, there are sorption site
competition and reaction kinetics of constituents in
mixtures that are unknown. Calcium reduces Cd
sorption by amorphic iron oxides, yet Zn is un-
affected [90]. High dissolved organic matter con-
centrations enhance solubility and complexation of
metals [61], but currently, organic ligand effects
cannot be predicted.

Some studies indicate that the metal-solution-
to-solids ratio has an important role in affecting
K, (sediment/water partition coefficient) [91,92].
Sharp increases in sorptions at low (400 mg/L) sed-
iment concentrations may be due to disaggregation
of sediment particles that increases exposed surface
area [91,92]; however, others suggest this is exper-
imental artifact [93,94]. In sulfidic environments
Cu, Cd, and Zn concentrations are governed by
the precipitation-dissolution process and are sol-
ids-concentration-independent [61], whereas in an-
oxic environments without sulfides, As and Cr
concentrations are controlled by adsorption/de-
sorption reactions and are solids-concentration-de-
pendent. Partitioning coefficients vary one to three
orders of magnitude in low-particle-concentration
environments as a result of these interactive and
nondeterministic effects [87].

Because of the heterogeneity of sediments, sed-
iment sorption partition coefficients cannot be
fully normalized by using one sediment character-
istic [69]. For nonionic organics with low solubil-
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ities, nonspecific van der Waal’s interactions of the
solute with the organic fraction of the sediment
dominate [69]. With some compounds this rela-
tionship has shown that valid K ;s can be deter-
mined [95]. Equilibrium rates and bioavailability
interactions are still a point of debate [96]. Rodgers
et al. [97] question whether sediment organic car-
bon content explains the variability observed in
sorption coefficients. Chemicals with high sorption
coefficients were usually not acutely toxic below
their solubility concentration [97]. lonic organic
compound partitioning is more complicated, being
influenced by numerous charge measures such as
cation exchange capacity, pH, and Eh [69]. Sorp-
tion of cationic pesticides was shown to occur on
negatively charged clay and organic matter sites [98].

Jenne and Zachara [68] state that there are
three critical areas where lack of data limits our
ability to quantitatively describe mobility (thus bio-
availability) of toxic elements in aquatic systems:
(a) equilibrium and kinetics of sorption to solids;
(b) thermodynamics of metal-dissolved organic
carbon (-DOC) complexation, species formation,
and solids solubility; and (c) kinetics of dissolution
and precipitation reactions. Therefore, predictions
of metal sorption have orders of magnitude uncer-
tainty and major discrepancies with field data [68].

Gradients

Steep vertical gradients (over distances of mil-
limeters to centimeters) exist in sediments for sev-
eral parameters that influence the previously
discussed partitioning processes, including oxygen,
redox potential, sulfur and nitrogen species, hydro-
gen, methane, and labile dissolved organic com-
pounds such as short chain fatty acid fermentation
products [99-103]. Over a small range, which cor-
responds to the Eh profile, there is sequential con-
sumption of different products via anaerobic
respiration and methanogenesis [99]. As discussed
later, these gradients may be altered by epibenthic
and benthic organisms, allowing oxygen to pene-
trate more deeply into sediments. In regard to
metal partitioning, oxygen and sulfide gradients
are particularly important. Another microbial
product that dominates interstitial water toxicity in
some sediments [104] is ammonia. This is more of
a factor in organically rich, anoxic sediments re-
ceiving nutrient inputs. Interstitial water ammonia
diffuses upward and may benefit epipelic algae in
euphotic zones [99]. These benthic algae (periph-
yton, aufwuchs) create vertical distributions of
oxygen in the sediment that vary spatially (in mil-
limeters) and temporally (from minutes to months)
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[99]. In lake sediment systems where biological
productivity is low, the oxygen penetrates deeper
(25 mm maximum) [99]. In stream systems oxygen
gradients may go much deeper (centimeters) due to
larger grain sizes and water exchange. These gra-
dients can be dramatically affected by sampling,
and in situ testing is recommended [99,105].

Deposition and resuspension

Another important consideration in sediment-
contaminant interactions and subsequent distribu-
tion in the aquatic system is grain size. Sediment
contaminant data should be evaluated on the ba-
sis of grain size [56] correction, which reduces the
inert fractions (e.g., hydrates, sulfides, amorphous
and fine-grained organics). The most useful size
fraction for contaminant assessments appears to be
<63 um [106,107]. This size fraction will tend to
predominate in deposition areas and be associated
with contaminants if they are present. Sand has
lower K5 than silt fractions due to lower specific
area and lower organic carbon content (in regard
to hydrophobic solutes) [69]. Hydrodynamics plays
a major role in the transport, deposition, and re-
suspension of the fine-grained sediments. Particle
diameters of suspended solids vary over two orders
of magnitude, and settling speeds in waters vary
four orders of magnitude [108]. Predicting trans-
port is complicated by the lack of understanding of
aggregation/flocculation and its effect on particle
sizes and settling speeds, floc disaggregation due to
shear, processes governing entrainment and depo-
sition, and turbulence description [108].

When resuspension events occur, predicting
metal remobilization may be possible in site-spe-
cific studies; however, remobilization is dependent
on particle residence time in the water column,
which varies between sites, storms, and systems
[56,66]. In most systems, however, remobilization
of metals from resuspended sediments is likely to
be insignificant due to the slow reaction rates [66].
Chlordane availability to D. magna was reduced by
suspended montmorillonite clay (0% TOC), but
suspended solids characteristics did not control
bioavailability when their concentrations were
greater than 200 to 300 mg/L [109].

Although resuspension effects appear limited if
onc considers the scavenging effects of solids, lab-
oratory studies of bioturbation effects on contam-
inant movement and toxicity to planktonic species
have shown otherwise. Bioturbation by benthic
and epibenthic invertebrates occurs in many ways:
by pumping pore water constituents out of the sed-
iment into overlying waters, injecting water into
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the sediment, pumping particulates to the sediment-
water interface, depositing fecal pellets on the sed-
iment surface, and disruption of horizontal and
vertical layering [110]. A bioturbation study using
tubificid oligochaetes, chironomid larvae, and un-
ionid bivalves noted substantial and different ef-
fects on sediment diagenesis and solutes exchange
between sediment and water [111]. Tubificids were
found in the upper 20 cm of sediment but fed pri-
marily in the top 2 to 9 cm [112-115], which was
a reducing environment. Karickhoff and Morris
[113] reported that 90% of an organic chemical
spiked into the biotic zone of sediment was trans-
ported by tubificids to the sediment surface in 30
to 50 d, water concentrations were increased four
to six times, and fecal pellets released less than
20% of the incorporated organic.

Inorganic, physical, and microbial process dy-
namics are affected by bioturbation [111]. Reactive
phosphate concentrations were reduced near the
scdiment-water and burrow water-water interfaces
by the infaunal species due to sorption to ferric
oxyhydroxides. Bioturbation increases aeration
and thus can affect Eh and pH gradients [115-119].
The tubificids increased ammonium concentrations
in the sediment and flux across the sediment-water
interface and also enhanced nitrate consumption,
However, the chironomids, which resided in the
upper 8 to 10 cm, reduced ammonium in the top 5
to 10 cm, but it increased rapidly below the bur-
rowed zone [111]. Findings have suggested that
ammonification and nitrification are significantly
enhanced in irrigated sediments [111,120,121]. The
tubes were covered by diatoms, which elevated
chlorophyll concentrations. The larvae thus influ-
enced algal community dynamics by altering nutri-
ent levels [51]. When the larvae emerged, the
nutrient dynamics changed [S1]. The chironomid
and clam burrows werc oxidized from overlying
oxygenated water penetrating 6 to 8 cm. Oxygen
diffusion laterally through burrow walls was evi-
denced by changing sediment color. The burrow-
ing of H. limbata had significant effects on organic
sorption partitioning in sediments [122]. Higher or-
ganic carbon and bacterial activity were associated
within the burrow walls of H. limbata. Organic
matter concentrations were doubled in lugworm
burrow walls, and bacterial activity peaked in this
area [123]. Tubificids, chironomids, and unionids
increased sediment transport of electron acceptors
(e.g., Oy, NO;, SO,). The increased solute flux
from pore waters was greater than that predicted
by pore water profiles. Some of this flux was due
to altered physical structure, irrigation, radial dif-
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fusion, metabolic by-products, enhanced decom-
position or mineral dissolution rates The degree
and nature of these effects were strongly mnfluenced
by the hife modes of the orgamsms [111] The ef-
fect of bioturbation on the overlying water envi-
ronments was also evidenced by increased toxicity
to water column species when burrowing organ-
1sms were present [124]

ECOSYSTEM INTEGRATION

Sediments play a major role in ecosystem pro-
cesses and ecosystem health [47,53] Generally
speaking, the surficial layer (upper few centime-
ters) 1s the active portion of the ecosystem, while
deeper sediments are passive and more perma-
nently 1n place These deeper layers are of interest
as a hustorical record of ecosystem activity but also
may be remtroduced mnto the active portion of the
ecosystem via dredging activities and severe storm
or hydrogeological events There 1s a contmnual flux
of morgamic [125-127] and organic compounds
[128,129] through the sediment-water interface
These processes may be accelerated by biological
activity (planktonic and benthic), and thus are sea-
sonally hnked [129-133], and also by other physi-
cal disturbances (e g , flow-induced resuspension,
dredging) whose temporal relationships are more
chaotic 1n nature {134,135] Sediment and pore-
water phosphorus transport to overlying waters 18
only partially regulated by pH and Fe?* and 15 a
complex process [126,133] In some sediments, am-
monia, phosphorus, and methane flux are corre-
lated and driven by organic matter mineralization
[133] Though the surficial sediment layer ecosys-
tem 18 more active, it 1s orders of magnitude more
permanent (or less active) than the overlying waters
and, therefore, often serves as a better record of
recent watershed activities (disturbances) than the
water column This realization has led to mcreased
sediment monitoring of contaminant concentra
tions and benthic macrowmnvertebrate communities
n recent years by federal and state regulatory
agencies [12,136] The usefulness of a sediment-
monitoring station as an indicator of contaminant
presence 18 a function of the interactions between
the change 1n contaminant net deposition rate, sed-
iment accumulation rate, mixing zone depth and
dynamics, samphng method and frequency, type of
Iaboratory method, and its precision and accuracy
[137]

The contammation of higher trophic levels such
as fish and fish-eating birds and mammals has
been linked to contaminated sediments on several
occastons [43,138] In the Great Lakes, many in-
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dustrial harbors have severely contaminated sedi-
ments [9,12,19,24,44,139-142], and uptake of
toxicants by a pnimary benthic invertebrate popu-
lation, Diporela sp , has been well documented
[143] Consequently the food chamn becomes con-
tarminated and the ecosystem subjected to an addi-
tional disturbance [52]

It has become evident that 1t 1s no longer ade-
quate to study only separate components of the
ecosystem, such as planktonic species 1n water-only
systems or chemical dynamics 1n a water-only or
sediment slurry system This reductiomst approach
[47,49] 1s essential for defiming processes but does
not provide an accurate picture of the component—
ecosystem interactions and, in fact, may produce
misleading results Examples of this disparity are
becoming increasingly obvious, particularly in the
field of aquatic toxicology as more holistic types of
studies are published [47,49,144] Whenever sedi-
ments are placed n toxicity assays using water col-
umn orgamsms and dosed with a contaminant, the
nominal toxicant effect concentration 1s different
from that of water-only exposures [81,145], if ben-
thic mnvertebrates are added to the same system,
then water column species may be adversely af-
fected [124]

Numerous studies [144-157] have demonstrated
the importance of using several species to evaluate
ecosystem contamination because species senstiv-
Ity varies between toxicants and, tn environmental
settings, 1s hikely unpredictable without previous
study Many test species/communities and associ-
ated endpoints have been recognized as useful sur-
rogates in water, effluent, and sediment toxicity
studies D magna, Ceriodaphnia dubia, P prome-
las, Tubifex tubifex, C tentans, Chironomus
rniparius, H himbata, Hyalella azteca, Panagrellus
redivivus, Selenastrum capricornutum, Lemna mi-
nor and Microtox®, and mdigenous bacterial, pro-
tozoan, macrobenthic invertebrate, or planktonic
communities A review of studies that used multi-
ple assays (e g , [17-19,24-28,74,105,139,140,144,
146,153-178]) revealed that each test species and/or
endpoint was reported as the most sensitive or of
equal sensitivity at one time or another Other
comparisons have indicated no one species to be
most sensitive to all chemazcals [179] This supports
the premise that a multitrophic-level test battery 1s
essential m assessments of aquatic ecosystems and
sediment quality

The majority of these studies dealing with
aquatic toxicity to a surrogate species (or a small
number of species) have not attempted to mnvest-
gate ecosystem nteractions a priori, such as ecosys-
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tem energetics or stress-productivity-predation
relationships. Rather, surrogate responses have
simply been quantified on the basis of sample tox-
icity and effects extrapolated to in situ conditions.
Although these exercises may satisfy the study ob-
jectives of defining sample toxicity to the test spe-
cies, they do little to document or define ecosystem
disturbance. This is not a reflection on the quality
of the science published to date but an indication
that the science is as yet in its infancy.

Cairns [180] has called for ecotoxicologists to
recognize ecology more in their studies of environ-
mental toxicity. Ecological processes can be ignored,
to a degree, whenever acute toxicity scenarios are
studied, such as sediments that are severely de-
graded. However, “significant cases of acute toxic
effects have been encountered infrequently” [181],
and the more common situations in which effects
and zones of contamination are gray [47,181] dic-
tate that natural and anthropogenic effects be sep-
arated. This cannot be done accurately without
an understanding of ecosystem dynamics such as
spatial and temporal variance of chemical, physi-
cal, and biological systems and their interactive
processes.

Community ecology in lotic and lentic systems
has progressed substantially in recent years [50-
52,182}. “Biotic dynamics and interactions are in-
timately and inextricably linked to variation in
abiotic factors” [183], and lotic systems are not in
equilibrium due to natural disturbances that may
occur frequently or infrequently [52]. Disturbance
can be defined as a discrete event that alters com-
munity structure and changes the physical environ-
ment and resource availability. These disturbances
vary in type, frequency, and severity, both among
and within ecoregions. The frequency and intensity
of disturbances cannot be predicted [52]. Interme-
diate levels of disturbance maximize species rich-
ness [52]. This relationship to diversity has been
described in a dynamic equilibrium model [184)
whereby the frequency of disturbance controls
whether competitive species and long-life-cycle spe-
cies exist. Equilibrium or steady-state conditions
will tend to occur if disturbances are infrequent,
thus excluding opportunistic species [185]. In
stream ecology, disturbance is the dominating or-
ganizing factor, having a “major impact on pro-
ductivity, nutrient cycling and spiraling, and
decomposition” [52]. Disturbances such as storm
events or the presence of toxicants can eliminate bi-
ota [183]. Recovery and succession of these systems
between disturbances are typified by recurrent or
divergent patterns [51,52]. Despite this inherent
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variability, benthic communities have been used ef-
fectively to classify community structure and func-
tioning in aquatic ecosystems [182].

In some systems “bottom-up” effects have been
observed where algal succession or community
composition alterations affect zooplankton grazers
[186-189]. Interruption of microbial cycling pro-
cesses reduces ecosystem productivity, alters sedi-
ment redox, produces anoxia, and increases H,S
production and acidity [188,189]. When benthic in-
vertebrate and protozoan cropping of bacteria is
discontinued due to contaminant-induced lethality,
the sediments serve as a carbon sink [188,189], so
organic carbon and nutrients necessary for sec-
ondary productivity are unavailable and food-web
alterations are likely [188,189]. The sediment bac-
terial community is available to sediment ingesters,
and bacterial production is transferred relatively
efficiently to fish through a single intermediate
consumer such as Chironomus [190]. In streams,
bacterial productivity may be greater from sedi-
ments than total primary production [191]. Benthic
shredders (amphipods) could differentiate between
fungal species colonizing detritus. So a change in
the fungal community could alter organic matter
processing rates [192].

If one is concerned with energy flow then the
bottom-up approach dominates; however, preda-
tor removal (top-down) will alter community struc-
ture, productivity, or biomass [187]. This reempha-
sizes the complex and simultaneous functioning of
ecosystem relationships.

Maximum productivity occurs at all trophic lev-
els, and maximum energy flow through the food
web occurs when predation intensities are interme-
diate throughout the system [54]. Nutrient excre-
tion by zooplankton is a major recycling process
[186] that is affected by fish predation [187]. This
suggests consumers regulate primary productivity
top-down in some systems [54].

SYSTEM VARIANCE

The major effect of natural and anthropogenic
disturbances on aquatic ecosystems is the increase
of spatial and temporal variance under equilibrium
conditions to much higher levels. Spatial and tem-
poral dimensions span 16 orders of magnitude in
strcam ccology [50,51]. Some suggest that spatial
heterogeneity enhances the ability of an ecosystem
to resist and recover after a disturbance [193]. Sig-
nificant spatial variance in sediments is common
[194,195]. Each level of the system has different di-
mensions and variances associated with it and in-
teracts simultaneously with other ecosystem levels
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and their respective dimensions and variances. This
complex reality is difficult, if not impossible, to de-
fine accurately but must be considered in all assess-
ments of sediment quality or ecosystem health.

Orians [196] stated that one of the greatest
challenges in ecology {and ecotoxicology} is bridg-
ing the conceptual gap between micro- and macro-
ecology. Aquatic systems can be considered as a
mosaic of “patches” [51]. “A patch is a spatial unit
that is determined by the organism and problems
in question” [51]. The heterogeneous environment
has highly clumped distributions {patches) of or-
ganisms whose spatial and temporal patterns and
relationships change seasonally due to factors such
as food (resource) patterns [197]; therefore, such
patches pose severe sampling problems. The appro-
priate sampling scale will depend on the organism’s
size, density, distribution, and life cycle, as well as
the question being asked [51], which, unfortu-
nately, is often not considered. Aquatic ecosystems
are open nonequilibrium systems [51,54] in which
patches are in transitory steady state with other
patches [198]. Different life histories and variable
interactions between species may prevent equilib-
rium [54].

The influence of storm events and watershed
characteristics on chemical element dynamics is
poorly understood, particularly because some are
lumped into operationally defined units such as
DOC or TOC [199]. Significant heterogeneity (62—
100%) has been observed between adjacent sedi-
ment cores in concentrations of organic matter,
water, and total phosphorus [200]. Some heteroge-
neity is likely due to invertebrates [201], sediment
transport by currents, and small-scale variations in
bottom profiles [194,200].

Varying tissue residue levels of Cd in H. azfeca
[202] and of Hg in plankton and benthos {130]
were related to hardness and both seasonal and re-
gional factors, respectively. Chironomid uptake of
Hg was limited by colloidal hydrated oxides of iron
(FeOOH), and MnOOH affected oligochaete,
nematode, and pelecypod uptake [130].

Di Toro et al. [41,55] found AVS concentra-
tions in sediments also varied seasonally, peaking
in late summer to early fall and again in spring,
which appears to correlate with productivity inputs.
This would be expected according to microbial ac-
tivity studies in which peak activity in sediments
correlated with seasonal plankton blooms/organic
carbon inputs [129,132]. Microbial processing con-
tributed substantially to carbon cycling in the sum-
mer, but 95% of the primary production went to
the benthos in winter [131].
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Sediment microbial activity, as previously dis-
cussed, varies significantly with sediment depth due
to gradients of natural electron acceptors [99-103].
This vertical variance has also been linked to tox-
icant deposition patterns [195]. A contaminated
stream station showing homogeneous particle size
distributions of sand and silt and water content was
sampled on both a 0.04-m? and a 1-m? grid with a
hand corer and Ekman dredge. Indigenous sedi-
ment microbial activity (§-galactosidase, §-gluco-
sidase, atkaline phosphatase, and dehydrogenases)
and mortality of D. magnag and C. dubia were not
significantly different in subsamples; however, spa-
tial differences of 100% or greater were observed
on small and large scales both horizontally (20 cm-
10 m) and vertically (4 cm intervals to 20 cm depth)
[195].

In stream benthic communities, hydraulics ap-
pear to be more important than substrate in deter-
mining distribution [203]. Small-scale sampling is
more apt to define meiofaunal patches than large-
scale sampling, which homogenizes patchiness and
[197] thus ameliorates significant differences. The
replicate number needed to obtain a given precision
decreases with increased density and sampler size,
and the optimal sampler size {considering cost and
precision) depends on mean density [204].

SEDIMENT SAMPLING AND MANIPULATION

Given the previous discussion, sampling and
testing of sediments are difficult if the investigator
is attempting to define in situ conditions. It is im-
possible to sample sediment without some degree
of disruption, as the very process of removing sed-
iment is disruptive. Few studies have focused on
sampling and sample manipulation (e.g., spiking)
effects on resulting toxicity responses [205,206]. A
standard guide was recently published by the Amer-
ican Society for Testing and Materials (ASTM)
concerning collection, storage, characterization,
and manipulation of sediments for toxicological
testing [207]. Other regulatory guidance documents
exist that are concerned, in part, with sediment col-
lection and characterization procedures [207]. The
ASTM guide attempts to standardize sediment col-
lection and handling methods by presenting limited
options with their associated strengths and weak-
nesses. However, it is apparent that the field of
sediment assessments is in its infancy, and the
guidance information is of a provisional nature.

Sampling
Choosing the most appropriate sediment sam-
pler for a study will depend on the sediment’s char-
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acteristics, the required efficiency, and the study
objectives. Several references are available that dis-
cuss the various collection devices [194,207-212].
The efficiencies of these samplers for benthic col-
lections have been compared, and, in general, the
grab samplers are less efficient collectors than the
corers [207].

The principal disadvantage of dredge samplers
varies; common problems are shallow depth of
penetration and presence of a shock wave that re-
sults in loss of the fine surface sediments. Dredge
samplers that quantitatively sample surface sedi-
ments have been described [212]. The depth profile
of the sample may be lost in the removal of the
sample from the sampler. Dredge sampling pro-
motes loss of not only fine sediments, but also
water-soluble compounds and volatile organic
compounds present in the sediment [207].

Studies of macroinvertebrate sampling effi-
ciency with various grab samplers have provided
useful information for sampling in sediment tox-
icity and sediment quality evaluations. The Ekman
dredge is the most commonly used sampler for
benthic investigations [208]. The Ekman’s effi-
ciency is limited to less compacted, fine-grained
sediments, as are the corer samplers. The most
commonly used corer is the Kajak-Brinkhurst, or
hand, corer. In more resistant sediments the Peter-
sen, Ponar, and Smith-McIntyre dredges are used
most often [208]. Based on studies of benthic mac-
roinvertebrate populations, the sediment corers are
the most accurate samplers, followed by the Ek-
man dredge, in most cases [208]. For resistant sed-
iments, the Ponar dredge is the most accurate and
the Petersen the least [208]. A comparison of sam-
pler precision showed the van Veen sampler to be
the least precise; the most precise were the corers
and Ekman dredge [208].

Corer samplers also have limitations [207] in
some situations. Most corers do not work well in
sandy sediments; dredge samplers or diver-collected
material remain the only current alternatives. In
general, corers collect less sediment than dredge
samplers, which may provide inadequate quantities
for some studies. Small corers tend to increase bow
waves (disturbance of surface sediments) and com-
paction, thus altering the vertical profile. However,
these corers provide better confidence limits and
spatial information when multiple cores are ob-
tained [197,208,213-215]. Care must be taken in
subsampling from core samples, because surface
sediments might be disrupted in even hand-held
core collection [216]. Rutletdge and Fleeger [216]
recommend subsampling in situ or homogenizing
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core sections before subsampling. For some studies
it has been advantageous or necessary to composite
or mix single sediment samples. Composites usu-
ally consisted of three to five grab samples [207].

Samples are frequently of a mixed depth, but
a 2-cm sample [35] is recommended and is the
most common depth obtained, although depths up
to 12 m have been used in some dredging studies.
The upper 2 cm represents the most biologically
and hydrodynamically active portion of the sedi-
ment and is the appropriate sample depth for
many assessments. However, for studies concerned
with historical pollution, depositional patterns, or
dredging issues, it is necessary to sample deeper
sediments.

Reference and control sediment

Assessment of in situ sediment toxicity is aided
by collection and testing of reference and control
samples [207]. A reference sediment may be de-
fined as a sediment possessing similar character-
istics to those of the test sediment but without
anthropogenic contaminants. However, it is not
unusual for nearby reference sites to have some de-
gree of contamination. Sediment characteristics
such as particle size distribution and percent or-
ganic carbon should bracket these of the test sed-
iment [207]. In some situations, the reference
sediment might be toxic due to naturally occurring
chemical, physical, or biological properties. For
this reason, it is important also to test the toxicity
of control sediments. A control sediment might
consist of natural or artificially prepared sediments
of known composition and of consistent quality
that have been used in prior sediment toxicity tests
or culturing and for which baseline data exist that
show they do not cause toxicity [207]. Control sed-
iments have been successfully used in toxicity eval-
uations [40].

Storage

Drying, freezing, and cold storage conditions
affect bioavailability [207]. Often the storage time
of sediments used in toxicity tests was not specified
and where specified ranged from a few days [205]
to one year [217]. Storage of sediments after ar-
rival at the laboratory was generally by refrigera-
tion at 4°C [9,44,145,146,174,184,197,198,201,207,
217]. Significant changes in metal toxicity to cla-
docerans and microbial activity have been observed
in stored sediments [156,206]. Recommended limits

for storage of metal-spiked sediments have ranged
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from within 2 [206] to 5 [218] to 7 d [35] to less
than two weeks [207,219]. A study of sediments
contaminated with nonpolar organics found that
interstitial water storage time did not affect toxic-
ity to polychaetes whenever samples were frozen
[220]. However, organic contaminant availability
has been shown to change with storage [143].

Sediment handling and storage may alter the
AVS concentrations that potentially affect metal
availability. Cadmium toxicity in sediments has
been shown to be related to AVS complexation
[55,221]. Whenever anoxic sediments are exposed
to air during collection and processing, AVSs are
volatilized. Acid volatile sulfides are a reactive
solid-phase sulfide pool that apparently binds some
metals, thus reducing toxicity [55,221]. If a study
objective is to investigate metal toxicity and the
sediment environment is anoxic, then exposure to
air might reduce or increase toxicity due to oxida-
tion and precipitation of the metal species or loss
of AVS complexation. It is generally agreed that
sediments to be used for toxicity testing should not
be frozen [222] and kept at 4°C under zero air
space or N, for less than two weeks before testing
[35].

Although risking changes in sediment composi-
tion, several studies elected to freeze samples
[18,24,220,223]. Fast-freezing of sediment cores
has been recommended for chemical analyses;
however, this alters sediment structure and profile
distortion occurs [216]. Freezing and thawing ap-
peared to increase release of soluble organic carbon
[220]. Freezing in anoxic atmospheres has been re-
ported to inhibit oxidation of reduced Fe and Mn
compounds [68]. It has also been recommended for
stored sediments that are to be analyzed for organ-
ics and nutrients [224].

Interstitial water chemistry changed signifi-
cantly after 24 h storage [225], even when stored at
in situ temperatures [225,226]. Coagulation and
precipitation of the humic material were noted
when interstitial water was stored at 4°C for more
than one week [227]. Oxidation of reduced arsenic
species in pore water of stored sediments was un-
affected for up to six weeks when samples were
acidified and kept near 0°C without deoxygena-
tion. When samples were not acidified, deoxygen-
ation was necessary [228].

Interstitial water collection

Isolation of sediment interstitial water has been
accomplished by several methods: centrifugation,
squeezing, suction, and equilibrium dialysis [207].
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In general, methods for recovery of relatively large
volumes of interstitial water from sediments are
limited to either centrifugation [229] or squeezing
[230]. Some pore water constituents, for example,
DOC or dimethylsulfide, might be significantly af-
fected by the collection method [8,231]. Other con-
stituents such as salinity, dissolved inorganic
carbon, ammonia, sulfide, and sulfate might not
be affected by collection methods, providing oxi-
dation is prevented [231]. If sediments are anoxic,
all steps involved in sample processing might need
to be conducted in inert atmospheres to prevent
oxidation of reduced species [231-233].

If interstitial water is collected by centrifuga-
tion and filtration, then effects on the interstitial
chemistry (and thus toxicity) need to be considered
after centrifugation [205]. Centrifugation followed
by 2-um filtration yielded similar metal concentra-
tions to those of dialysis methods [234]. However,
filtration with glass fiber or plastic filters is not
appropriate in some cases and has been shown
to remove contaminants [235]. Centrifugation at
7,600 g with glass contact only was shown to be su-
perior to filtration methods [235]. Others have pro-
duced contrary results, recommending filtration
with polycarbonate filters [236]. Filtration is nor-
mally conducted to remove particles with a 0.45-
um pore size, however 0.20-um or smaller pore size
membranes have been recommended [68]. Centrif-
ugation may not remove dispersible clays, which,
because trace metals concentrate on solids, may
have significant effects on sorption studies [68].

Elutriates

Many studies of sediment toxicity have been
conducted on the elutriate or water-extractable
phase [10,44,237]. This method was developed to
assess the effects of dredging operations on water
quality. Sediments are typically shaken in site or
reconstituted water (1:4 v/v ratio) for 30 min. The
water phase is then separated from the sediment by
centrifugation, followed by filtration of the super-
natant through a 0.45-um filter when conducting
some tests such as algal growth assays. Filtration
may significantly reduce biological effects [238] by
removing particulate-associated contaminants and
dissolved contaminants that bind to the filter ma-
trix. The method of elutriation affects metal spe-
ciation, ammonia concentration, pH [239], and
toxicity [238]. The solids-to-solution ratio affects
sorption rates [65,69] and should be considered
when doing sediment extractions such as prepara-
tion of elutriates, but may not be a critical factor
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in whole sediment tests [195] where there is no
mixing.

Spiking

A large number of marine and freshwater sed-
iment toxicity studies have used spiked (dosed) sed-
iments so that pure chemical fate or effects can be
examined. It has been proposed as a method to aid
in development of sediment criteria [39] and is rep-
resentative of recent discharges [35]. The method
of spiking has varied with both organics and met-
als. Organic compounds are generally added via
a carrier solvent such as acetone or methanol to
ensure solubilization and their remaining in solu-
tion during mixing. Whereas organic compounds
are generally added in an organic carrier, metals
are generally in aqueous solutions. Compounds are
also added to water overlying sediments, and the
compound is allowed to sorb with no mixing [207].
Occasionally the carrier is added directly to sedi-
ment [207], then the carrier is evaporated before
addition of water. This approach seems to result in
sorption to different sites from those of dosing un-
der aqueous conditions. In most cases, either the
compound is coated on the walls of the flask and
an aqueous slurry (sediment and water in various
proportions) added or the carrier-containing mix-
ture is added directly to the slurry. A variety of
methods have been used to spike sediments with
metals. The two principal methods are (a) metal is
added directly to the sediment, which is mixed, and
then water is added [207,240] or (b) metal is added
to the overlying waters [145,207]. Thorough mix-
ing of spiked sediments has been accomplished
with the rolling mill technique and Eberbach and
gyrorotary shakers [207].

The time between the spiking of the compounds
and the use of the test sediment has been variable
[207] and does seem to affect the biological avail-
ability of compounds [32,143,205,241]. Equilibra-
tion and mixing conditions vary widely in spiking
studies. The duration of contact between the chem-
ical and sediment particles can affect both the par-
titioning and the bioavailability of the toxicant, as
discussed in preceding sections. This effect appar-
ently occurs due to an initial rapid labile sorption
followed by movement of the toxicant into resis-
tant sorption sites on or in the particle [70,242]. In
addition, it is important to recognize that the quan-
tity of spiked toxicant might exceed the complex-
ation capacity of the test sediment system and not
allow reactions to attain equilibrium. These phe-
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nomena will complicate test result interpretation
[206,243].

Sediment dilution

Another manipulation of sediments for toxicity
testing is sediment dilution. In order to obtain con-
centration-effect information in whole sediment
toxicity evaluations, differing concentrations of the
test sediment should be used [244,245]. Currently,
there is little information available on the most
appropriate method for diluting test sediments to
obtain a graded contaminant concentration or con-
cerning the methodological effects of such a dilu-
tion. A “clean” noncontaminated sediment may be
used as the “diluent,” which optimally has phys-
iocochemical characteristics similar to those of the
test sediment, such as organic matter/carbon and
particle size, but does not contain elevated (above
background) levels of the toxicants of concern
[207,244-246). However, adding clean sediment in-
creases fresh sorptive sites for contaminants, thus
reducing the biological effect further than simple
dilution. Others have diluted test sediments with
water [156,247] or clean sand [244] or have diluted
pore water [245]. In all dilution methods, both the
effect of contact time of the interstitial water and
sediment (i.e., equilibrium) and the effect of dis-
rupting the sediment’s integrity on toxicant avail-
ability must be considered. Dry weight is often
used as the standardization unit in sediment stud-
ies [239]; however, it has been shown to be inap-
propriate when determining bacteria, organic
matter, and enzyme activity relationships both di-
rectly [248] and indirectly [249]. Biologically, rela-
tionships based on dry weight may be artifactual,
and volumetric (areal) units incorporating water
content and bulk density appear to be superior as
a sediment standardization unit [248]. This issue
should be considered when determining concentra-
tion-effect levels.

ASSAY EXPOSURE CONDITIONS

Given the sensitive and tenuous nature of sed-
iment integrity, exposure conditions are particu-
larly crucial in determining toxicant behavior and
organism/community response. Parameters of
concern include time of exposure, feeding, wa-
ter:sediment contact time, the chemical/physical
environment (e.g., light, temperature, dissolved ox-
ygen), and the sediment test phase (whole, intersti-
tial, or extractable).
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Time

Most marine and freshwater sediment toxicity
testing has been limited to acute testing in which
exposure periods typically were 15 min for Micro-
tox; 48 h for cladocerans; 96 h for fish; and 4 to
10 d for amphipods, oligochaetes, chironomids,
and Ephemeroptera. Greater sensitivity to toxi-
cants occurs with extended exposure [32,250-253].
However, only a limited amount of freshwater sub-
chronic and chronic toxicity testing has been con-
ducted and has usually consisted of algal metabolism
(24 h) and growth (96 h), cladoceran reproduction
(7 d), amphipod reproduction and growth (28 d),
oligochaete growth (10 d), chironomid growth and
emergence (10-15 d), and fish terta and growth
(7 d). There is a continuing debate in aquatic tox-
icology over the definitions, adequacy, and/or re-
lationships between acute, subchronic, and chronic
toxicity testing [254-256]. Early life stage assays
that monitor fecundity and growth are more sen-
sitive than survival studies of adults [257]. The sen-
sitivity of many molecular and cellular endpoints
is greater than community structure and ecosystem
function endpoints (Fig. 2); however, determining
their ecosystem significance is difficult at this point

Molecuies - Cells Organisms
. Matgbolites Metabolism

Genes Behavior
*Enzymgs- proteins Growth - development
Immuing system Structure - morphology
“Histopathology Reproduction
b iy Survival

(seconds - days) (minutes - years)
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in time. There are obvious advantages of conduct-
ing subchronic tests (e.g., shorter testing period is
less resource-intensive, allowing more testing) and
chronic tests (e.g., no extrapolation from shorter
test exposure periods necessary) [255,256]. In ad-
dition, different lethal or sublethal metabolic end-
points can be studied, so both types of assays are
useful and necessary.

Feeding

The same testing factors (feeding, physical and
chemical conditions) that have been recognized as
important in controlling toxicity responses in efflu-
ent pure chemical and water column assays [258]
are also important in assays of sediment toxicity.
However, some different considerations and pa-
rameters do exist, such as the changing through
time of water quality [259]. Reduced feeding did
not reduce amphipod survival but did delay midge
emergence. Increased feeding required flow-through
conditions to inhibit growth of mold-bacteria on
the sediment surface [259].

Cladocerans and fish do not collect food as ef-
ficiently when sediments are present in the test bea-
ker, so growth may be greater in control or
water-phase exposures [260,261]. Feeding algae or

Populations-Communities Ecosystems
Diversity Productivity
Abundance Decomposition

Intraspecific interactions
Successional patterns
Spatial structure

(weeks - decades)

(days - years)

Response Time

Fig. 2. General relationship between biological endpoints, level of toxicant sensitivity, ecosystem relevance, and re-

sponse time (modified from [464]).
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other organic matter (e.g., yeast, Trout Chow®)
can alter dissolved oxygen, pH, and/or toxicant
availability, which should be monitored, standard-
ized, and related to in situ conditions wherever
possible.

Other physical parameters

Turbidity due to nonsettleable clays, dissolved
organics, algae, and other suspended/resuspended
solids should be monitored because it will affect
toxicant availability [109] and change through
time, as previously discussed. Temperature will af-
fect fugacity via thermodynamic and metabolic
rate relationships. Natural light contains UV wave-
lengths, which have been shown to trigger photo-
induced toxicity in the presence of polycyclic
aromatic hydrocarbons (PAHs) [262].

Sediment contact

Significant correlations between organism re-
sponse (sample toxicity effect level) and sediment
contaminant concentrations have been made with
a variety of test systems (e.g., static, recirculating,
static renewal), test species (e.g., planktonic, ben-
thic invertebrate, microbial), and sample phases
(Table 1). Sediment:water contact time in sediment
toxicity assays may exert substantial effects on
overlying water quality and, therefore, organism
response [145]. Sediment oxygen demand (bio-
chemical and chemical) can be significant in some
sediments rich in nutrients and reduced substances
[263], requiring aeration of overlying water [264].
Dissolution of sediment components such as car-
bonates may elevate hardness [253,259], which
would affect the availability of some metals such
as Cd, Cu, and Pb. Whole sediments spiked with
arsenite, Cu, or Cd have shown decreasing toxic-
ity and overlying water concentrations of metal de-
crease with extended exposure periods [145,205,
265,266]. Disturbance of redox gradients and in-
creased oxygenation may result in reduced levels of
AVS and, thus, possible release of free/available
metal species [41]. Exposure conditions have con-
sisted of static [267], recirculating [19,27,75], static-
renewal [267], and flow-through systems [27,238,
259,267], and system comparisons have shown
significant differences in toxicity response [219,
238,253] with static being the worst case [219,238].
Higher survival in flow-through whole sediment as-
says, as compared to static exposures, has been
attributed to flushing of desorbed contaminants
from overlying water or more stable (optimal) wa-
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ter quality [238,259]. Overlying water hardness, al-
kalinity, and conductivity more than doubled
during 29-d static exposures [259].

In whole sediment assays a 1:4 ratio of sedi-
ment:water has been common [219]; however, the
Prater-Anderson recirculating system has been
used at a ratio of 1:9.5 [19]. The 1:4 ratio proba-
bly originated from the COE elutriate preparation
procedure. A study of Se-spiked sediment showed
the sediment:water volume or surface interface area
ratios did not affect D. magna survival until extreme
ratios were used, such as 3:1 or 1:8 [206]. This
finding may not be universal because partitioning
dynamics are complex and chemical-dependent.

Test phase

Perhaps the most important issue in sediment
toxicity testing is the appropriate test phase to use.
Test phase systems can be categorized as follows:
extractable (solute other than water) phase (XP),
elutriate (water-extractable) phase (EP), interstitial
water phase (IW), whole sediment (WS), and in
situ (NS) assays. Each has associated strengths and
weaknesses that prevent recommendation of any
one system to meet all study objectives. The issues
discussed previously regarding sediment integrity
and toxicant sorption/desorption are particularly
pertinent when attempting to interpret assay re-
sponses between different test phases. These con-
siderations are summarized in Table 1.

Few studies have compared test phases as treat-
ments [175,238]. Some studies have compared
phases but used different assays [175,245], which
does not allow a direct comparison of phase effects
on toxicity. The elutriate phase has been shown to
be more toxic [268] and less toxic [140,175,238]
than other phases. In studies of four areas in the
Great Lakes [140,175] and one stream in Ohio
[238], the elutriate fraction was always less toxic
than whole sediment assays using the same end-
points. Some sediment toxicity effects are associ-
ated with the whole phase only [74]. Interstitial wa-
ters, however, were more toxic or of equal toxicity
to whole sediment [238]. The greater toxicity may
be due to elevated ammonia concentrations [104]
that are diluted in overlying waters in whole sedi-
ment assays. Higher metal concentrations have
been observed in interstitial waters compared to
elutriates [25,33]. Benthic species exposed in sys-
tems void of sediments may be stressed [46,245]
and thus affect the toxicity-effect level. Knezovich
et al. {269] state that an organism morphology,
ecological niche, feeding mechanism, and physiol-
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ogy will determine toxicant, uptake, pathway, and
thus, hazard. For example, oligochaetes are sedi-
ment ingesters, whereas many benthic and epiben-
thic species are filter feeders [40] and thus are
exposed to interstitial and overlying waters to vary-
ing degrees [40,270]. It is likely that no consistent
relationship between relative toxicity of all intersti-
tial, elutriate, and whole sediment assays will ever
exist due to the multitude of physicochemical and
biological process variables.

Some acute toxicity assays using benthic inver-
tebrates have been conducted in sediment-free sys-
tems such as interstitial water, elutriate phase, or
spiked waters [245,252]. As these species (such as
H. azteca, Chironomus sp., or H. limbata) require
substrate contact and/or burrowing capabilities
during their life cycles [271,272], its absence in-
duces artificial and perhaps stressful conditions
[45]. Stress has been observed in exposures greater
than 48 h by decreased control survival or canni-
balism. The relationship of this unnatural stress
factor on acute effect-level determinations is un-
known but should be considered.

Considerations in microbial assays

Microbial (bacterial) systems are particularly
sensitive to test conditions [273]. Indigenous en-
zyme activity and luminescence are significantly af-
fected by the sample diluent type [104,273-275].
Dehydrogenases are oxidoreductases that are active
in the electron transport system and localized in
cellular membranes. They are, therefore, sensitive
to osmotic changes potentially introduced by the
sample diluent and the extracting solution, which
lyses the membranes [273]. Bioluminescence in the
Microtox assay is also affected by the sediment ex-
traction solution [274], and the toxicity of some
compounds such as ammonia is quantified better
using sucrose as a diluent rather than sodium chlo-
ride [104]. The type and quantity of labeled sub-
strate (such as triphenyl tetrazolium chloride or
'4C algal hydrolysate) used in determinations of
sediment microbial activity are also controlling fac-
tors in assay response. Other factors that have been
shown to affect enzyme activity determinations are
sample storage [249,275,276] and false positives
(elevated activity) due to abiotic chemical reduction
of enzyme substrates [167,277]. Because indige-
nous microbial populations can change rapidly,
both in community composition and in metabolic
rate, it is necessary to conduct assays as soon as
possible after sample collection and use a short ex-
posure (incubation) time [275].

G. A. BURTON, IR.

TOXICITY ASSAYS

A wide variety of toxicity assays used to evalu-
ate water column, effluent, and pure chemical tox-
icity have been modified for laboratory and in situ
testing of whole sediments or used, unmodified, in
assays of XP, EP, or IW (Table 2). Some water
column assays have used overlying water or been
placed in situ, above the sediment, in evaluations
of sediment quality [278,279]. Few benthic organ-
ism assays exist, but they have been widely used.
Most studies have used single species exposures,
but use of multispecies test systems (e.g., protozoan
colonization) have advantages of more realistic in-
teractions and ecosystem-relevant (structure-func-
tion) endpoints [4,280,281]. There are numerous
assay characteristics that should be considered
when selecting the optimal toxicity assay to meet
assessment objectives (Table 3). No one assay is
superior in any one characteristic for all study ob-
jectives. Because verification components such as
ecosystem relevance, sensitivity, and discriminatory
ability are so critical in the assessment process,
multiple species and endpoints should be incorpo-
rated in thorough assessments of sediment contam-
ination. The characteristics of an ideal sediment
assay and indicators of ecological change have been
discussed by others [282-284]. Examples of the
various assays, assay conditions, and significant
findings are reported here.

Bacteria

Microbes are a critical component of detrital
breakdown [285]. Their role in nutrient mineraliza-
tion, nitrogen fixation, sulfate reduction, and car-
bon cycling through the detrital food chain is well
established [188,189,285]. Toxicant transformation
kinetics in sediments appear to be linked to organic
carbon cycling [127]. Many of the hydrolases and
oxidation-reduction enzymes measured in micro-
bial assays are involved in a variety of major met-
abolic systems common at all trophic levels and
critical in biogeochemical cycling [188]. The pro-
ductivity of fisheries has been tied to the detrital
food chain [188,189].

Monitoring microbial responses has been rec-
ommended as an early warning indicator of ecosys-
tem stress [286] and a means of establishing
toxicant criteria for terrestrial and aquatic ecosys-
tems [287]. Resulting changes at the species level
should be accompanied by changes in respiration
and/or decomposition rates [286]. The usefulness
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Table 2. Representative freshwater and sediment toxicity tests

Biological level

Assay/organism community

Endpoint

Amphibians Xenopus laevis
Fish Pimephales promelas
Zooplankton Colpidium campylum

Brachionus sp.
Protozoan colonization
Daphnia magna
Ceriodaphnia dubia

Benthic invertebrates Panagrellus redivivus
Caenorhabditis elegans
Tubifex tubifex
Stylodrilus heringianus
Hpyalella azteca
Pontoporeia hoyi (Diporeia sp.)
Corbicula fluminea
Anodonta imbecilis
Chironomus tentans

C. riparius

Hexagenia limbata
Macrobenthic community

Microbes

Phytoplankton Selenastrum capricornutum

Natural phytoplankton

Macrophytes Lemna minor

Hydrilla verticillata

Microtox (Photobacterium phosphoreum)
Alkaline phosphatase (sediment community)
Dehydrogenase (sediment community)
B-Galactosidase (sediment community)
B-Glucosidase (sediment community)

Embryo-larval survival, terata
Embryo-larval survival, growth, terata

Growth

Survival

Structure indices, respiration
Survival, reproduction
Survival, reproduction

Survival, growth, molting
Survival

Survival

Survival, avoidance, reworking rate, growth
Survival, growth, reproduction
Survival, avoidance

Survival, growth

Survival

Survival, growth, emergence
Survival, growth

Survival, molting frequency
Community/population indices

Luminescence

Enzyme activity
Enzyme activity
Enzyme activity
Enzyme activity

Growth, '*C uptake
Fluorescence, structure-species abundance

Growth (frond number), chlorophyll a,
biomass

Shoot length, root length, dehydrogenase
activity, chlorophyll a, peroxidase

of monitoring the microbial community is due, in
part, to its ability to respond so quickly to environ-
mental conditions (e.g., toxicant exposure) and the
major role it plays in ecosystem biogeochemical
cycling processes [188,287] and the food web [189,
190]. Indigenous microbial activity in waters and
whole sediments has been shown repeatedly to be
sensitive to stream degradation, as evidenced by
correlations with macrofaunal community indices
and toxicant concentrations [146]. These effects
were often observed at low ug/L concentrations of
metals and/or synthetic organics. Measurement
and/or interpretation of ecosystem function indices
and their significance is often difficult, particularly
when information on the indigenous communities
is unavailable. When macro- and meiobenthic in-
vertebrate and protozoan cropping of bacteria is
removed, organic carbon and nutrients may be-
come unavailable and impacts to the remainder of
the food chain are likely [31,189].

When investigating chronic toxicity and other

eariy warning indicators of toxicant stress, stimu-
latory effects are often noted at low toxicant con-
centrations in fish, cladoceran, oligochaete, algal,
macrophyte, and microbial indicator assay re-
sponses [140,146,288,289]. This phenomenon is
common when using microbial and photosynthetic
organisms as indicators. Stimulatory effects can be
attributed to nutrients, adapted microbial commu-
nities, the Arndt-Schultz phenomenon, and/or
feedback mechanism disruption [290-292] whereby
low levels of toxicants increase metabolic pro-
cesses. This latter possibility has been reported else-
where in aquatic evaluations [157]. Pratt et al.
[292] suggest that elevated structure and function
responses are initial stress indicators that probably
reflect a disruption of normal feedback mecha-
nisms controlling nutrient dynamics and species in-
teractions. Stimulation or inhibition of activity
may also result when carbon or nutrient substrates
are altered [30,31,189], so that one enzyme system
(e.g., alkaline phosphatase) is stimulated while
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Table 3. Optimal toxicity assay considerations

1. Verification components
Ecosystem relevance
Species sensitivity patterns
Appropriate test phase
Short or long exposure period
Definitive response dynamics

2. Resource components
Organism availability
Laboratory availability
Expertise required
Expense and time required

3. Standardization components
Approved standard methods
Reference data base
Interlaboratory validation
Quality assurance and quality control criteria

another (e.g., galactosidase) is inhibited. When
comparing test samples with reference samples, in-
hibitory and stimulatory effects should be regarded
as a perturbation. Because microorganisms repro-
duce and adapt relatively quickly, pollutant effects
must be greater than macrofaunal responses to be
environmentally significant. In addition, as they re-
spond readily to stimuli other than contaminants,
caution should be used in data interpretations.

Mircobial assays can be divided into testing
groups of either indigenous communities or labo-
ratory-cultured strains and assay endpoints that are
biochemical (such as enzyme activity, biolumines-
cence, lipopolysaccharides, muramic acid, and ATP
content) or other metabolic processes (such as
growth, uptake, respiration, substrate transforma-
tion, viability, and microcalorimetry). These end-
points have been measured by a multitude of
methods, primarily in studies of water, wastewater,
and soil systems [164,166-168,176,177,287,293—
309] and have been applied to sediment systems to
some degree [26,140,145,146,169,175,188,189,195,
274,277,310-317}.

Pure culture systems used in assessments of sed-
iment extracts include Microtox (Photobacterium
DPhosphoreum) [274), Spirillum volutans [297],
Escherichia coli [312}, Nitrobacter sp. [318], Azoto-
bacter vinelandii {319], Aeromonas hydrophila
[298], Pseudomonas fluorescens [320], and Pseu-
domonas putida {177]. In most comparative sur-
veys, but not in others, Spirillum was the least
sensitive to toxicity [169]. Microtox has been listed
by the EPA as a supplemental test to use in Tier 1
screening tests in the Technical Support Document
Jor Water Quality-Based Toxics Controf approach

G. A. BUurToN, JR.

[321]. However, limited use is actually made of any
microbial toxicity test in EPA program activities
[287,293].

Microtox testing has recently been incorporated
into sediment toxicity test batteries {104,139,175,
178,308,322] and was originally reported in marine
sediment studies by Schiewe et al. [274]. They com-
pared extracting solutions and suggested dimethyl
sulfoxide (DMSO} be used with caution. Response
was related to the sums of organic class fractions
contaminating the sediments. Some toxicity was
attributed to extraction of natural organics [323].
The insensitivity to some elements and compounds
might have been due to an inappropriate diluent
(ionic strength adjustor) [104,308,324]. Interstitial
water in large grain contaminated sediments was
more toxic than fine-grain waters; however, the
opposite was true for solvent-extracted sediments
[308]. Numerous comparisons of Microtox sensi-
tivity to pure compounds and effluents with Daph-
nia sp. and fish (primarily P. promelas) show
similar effect levels in general [176,325] and were
more sensitive than other microbial tests [326].
Many of these studies show Microtox to be slightly
less (up to 1.5 orders of magnitude) sensitive, even
though high correlation coefficients were observed
[176]. In three [139,175,322] of the four [104] sed-
iment comparison studies, Microtox responses
were very sensitive and discriminatory of sediments
contaminated with a wide variety of synthetic or-
ganic and metal compounds. The fourth study
[104], in which the primary toxicant was ammonia,
showed interstitial water effects to P. promelas, C.
dubia, and S. capricornutum but not P. phospho-
reum. Recently, a whole sediment exposure method
using P. phosphoreum was presented and appeared
to be more sensitive to hydrophobic chemicals than
the elutriate Microtox assay [327].

A few metabolic processes or enzymes involved
in key metabolic systems have been measured in
contaminated sediments. Capone et al. [328] spiked
estuarine sediments with Hg, Pb, Ni, Cd, Cu, Zn,
Cr, Mo, Fe, and As and followed methanogenesis,
sulfate reduction, CO, evolution, and microbial
biomass. In general, there was initial inhibition fol-
lowed by stimulated responses, which was attrib-
uted to metal complexation, biotransformation,
and inhibition of competing microflora. Carbon
dioxide and CH, production {organic matter de-
composition), Hg methylation, sulfate and nitrate
reduction were measured in sediment microcosms
designed to measure perturbations [329]. Sediment
trays incubated in situ in subarctic marine sedi-
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ments were used to show that crude oil decreased
nitrogen fixation, denitrification, and redox po-
tential. Carbon dioxide and CH, production was
increased [189]. In addition, some hydrolases were
depressed while others were stimulated [188]. Sim-
ilar effects occurred in river sediments impacted
by crude oil with decreased phosphatase activity
and elevated CO, and methane production [330],
while others have seen no appreciable impact on
oil-impacted microbial communities [310]. Water:
sediment-phase marine microcosm tests were com-
bined with in situ sample collection to study organic
compound fate and effects [189]. Endpoints in-
cluded microbe grouping, enzyme activities, ATP,
and radiotracer analysis. Sayler et al. [314-316)
conducted stream, microcosm, and experimental
pond evaluations of sediment microbial community
responses in perturbed systems. Accurate differ-
entiation of contaminated and noncontaminated
sediments required several community response
endpoints (such as ATP, alkaline phosphatase, vi-
able numbers, and mineralization rates).
Buikema et al. [26] compared glucose-G-phos-
phate dehydrogenase, catalase, acetylcholinester-
ase, ribonuclease, and acid phosphatase activities
in extracted and unextracted lake sediments con-
taminated with metals and compared them to the
survival of D. magna and H. limbata (48 and 96 h,
respectively). Enzyme inactivation by solids was
noted. Responses of catalase and H. limbata were
related, and survival was inhibited in fine-grain
sediments (<8 pm), which may have been a parti-
cle size rather than a contaminant effect. Burton
and Stemmer [146] summarized five stream profile
assessments across the United States in which in-
digenous oxidoreductase and hydrolase activities in
waters and sediments were compared to in situ
chemical concentrations, biological community
metrics, and surrogate test species. At each site,
statistically significant relationships were observed
between indigenous enzyme activities and in situ
conditions, revealing toxicant impacts, natural spa-
tial variation, and apparent food-web interaction.
B-Galactosidase activity showed significant rela-
tionships in 80% of the studies to 37.5% of the
measured stream parameters. $-Glucosidase and
dehydrogenase activities were significant indicators
of stream conditions in 60% of the studies, whereas
reproduction (water only) of C. dubia was related
in 50% of the studies to 22.5% of the stream pa-
rameters. Hydrolases were also effectively used to
define sediment spatial variance in creosote-con-
taminated sediments (193], It appears that, in gen-
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eral, assays of microbial processes and natural
assemblages of microorganisms are superior to pure
cultures as test systems [331].

Protozoa

Pratt and Cairns [332] grouped freshwater pro-
tozoa into six functional groups based on food re-
quirements: dissolved mineral nutrients; bacteria
and detritus; algae, bacteria, and detritus; diatoms;
dissolved organics; and rotifers and protozoans.
The “bacteria and detritus” group comprises the
majority of protozoan genera. An assemblage of
protozoa is a complex structure of herbivores, car-
nivores, omnivores, and detritus feeders [333]. The
majority of species are cosmopolitan in nature and
tolerate a wide range of ionic concentrations in
fresh water [271]. They play an important role in
the food web and “microbial loop” [149,271]. Holo-
phytic and saprozoic species are producers using
dissolved nutrients and are food for meiofauna as
are holozoic species, which consume particulate
living and dead material [271]. Few sediment con-
tamination studies have been conducted with pro-
tozoans. Acute toxicity assays using the ciliate
Tetrahymena sp. have involved only waters [334].
Assays of Colpidium campylum measured growth
(14-25 h) in elutriates and sediment slurries [149,
335]. Protozoan colonization of artificial sub-
strates (polyurethane foam) were used in labora-
tory and in situ tests [144,178,278]. Laboratory
tests were with elutriates, whereas in situ assays
were suspended over sediments. Community struc-
ture and functional endpoints included decoloniza-
tion, protozoan abundance, taxa number, photo-
troph and heterotroph abundance, respiration, and
island-epicenter colonization rates. Functional end-
points and phototrophs were the most sensitive
endpoints. Stimulatory and inhibitory results were
observed, and careful interpretation of effects was
required [278]. Faster recovery occurred after di-
quat application in microcosms containing sedi-
ments [336].

Rotifers

Most rotifers are omnivorous, ingesting all or-
ganic particles of the appropriate size [333] and oc-
cur in an extreme variety of freshwater habitats.
Few species exist, however, in fast-flowing streams.
They are a food source for a few protozoans, large
cladocerans, copepods, and small fish. Densities of
40 to 500 organisms per liter are common in litto-
ral areas of ponds and lakes and are related to food
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availability [333). Recently Brachionus calycifloras
has been used to measure toxicity of sediment elu-
triates [175], measuring survival at 24 h [337].

Nematodes

Little is known about free-living freshwater nem-
atodes [271]. Many species are cosmopolitan in na-
ture, can survive in a wide variety of conditions,
and are primarily in the meiobenthos. They may
reach densities of 100,000/m? to a depth of 2 cm
in soft sediments. They can survive anoxic condi-
tions for weeks and have highly resistant eggs [271].
Sediment extracts and elutriate toxicity were eval-
uated with Panagrellus redivivus in 4-d exposures
[178,338-340]. Survival, growth inhibition, and
molting inhibition (mutagenicity) were followed in
tests begun with the second embryonic stage [338].
A free-living nematode, Caenorhabditis elegans,
was recently proposed as a promising test system
based on culture-test simplicity and sensitive 96-h
LC350 values for several metals [341]. In situ com-
munity structure of nematodes was related to phys-
icochemical factors such as nutrients and dissolved
oxygen [342].

Bryozoans

Bryozoans are found on substrates in unpol-
luted, unsilted, well-oxygenated waters of lentic
and slow-moving lotic systems. A colony may con-
sist of thousands of individuals and is often asso-
ciated with logs and stones in dim light [271].
Pardue and Wood [343] showed three species of
phylactolaemate bryozoan ancestrulae were ex-
posed for 96 h to Cu, Cd, Cr, and Zn and were
more sensitive than several invertebrates and fish.
Absence of a pollution-sensitive species, Pec-
tinatella magnifica, has been correlated with poor
habitat quality [344}.

Gastropods

Most aquatic systems contain snails or univalve
mollusks {271]. The species are selective for four
different types of substrates: clean cobble, silt and
detritus, macrophytes and associated detritus, and
allochthonous organic matter [271]. Most are her-
bivorous, whereas Lymanaeq is omnivorous. In
water-only exposures, snails are very sensitive to
copper and other metals [173]. Greatest toxicity
was observed in flow-through, softwater systems
using nonoperculate species; however, there were
exceptions to each of these findings [173].

G. A. BURTON, JR.

Pelecypods

Bivalve mollusks are common in large rivers
and vary in size from 2 to 250 mm in length. Their
primary food is fine organic detritus that has been
resuspended [271], with the significance of plank-
ton as a food varying with the species and ecosys-
tem. Particles as small as 1 um can be removed
from the water. Some species burrow during their
life cycle well below the sediment surface (up to 25
cm) and have an interstitial water suspension-
feeding mechanism. Their life cycles range from
one month to three years and are a common food
of fish, reptiles, amphibians, and mammals. Their
filtration capacity is massive. It has been estimated
that approximately 7 billion clams inhabit Lake St.
Clair, and they theoretically filter the entire lake
every 13 d, assuming each organism filters 4 L/d
[201]. This has dramatic implications on their role
in ecosystem dynamics.

A drastic decline in species and population
numbers of this ecologically and economically im-
portant group has been recorded in the past three
decades [271]. Recently, they have been used in
surveys of aquatic toxicity both in the laboratory
and in situ [345]. Preference-avoidance tests with
Acroneuria and insecticides showed increased drift
and locomotor activity [346]. Sublethal alterations
in oxygen consumption and free amino acid con-
centrations of Corbicula fluminea were studied in
60-d sediment-void systems [347]. While celluolytic
activity was sensitive to effluent toxicity in labora-
tory and field caged experiments, longer exposures
were necessary in the Iab to elicit response levels
noted in situ [348]. Mussels have been useful in
long-term field-monitoring studies [219], and
growth in situ appears to be a sensitive endpoint
[349]. Keller and Zam [350] reported a simplified
method for in vitro culturing of Anodonta, Lamp-
silis, and Villosa spp. Mussels have been used to a
limited extent in environmental assessments [351].
Recently a toxicity test using young Anodonta im-
becilis was reported and found useful for measur-
ing sediment toxicity [352].

Oligochaetes

Oligochaetes act as do terrestrial earthworms,
mixing surface layers of sediment. The tubificids
are common in polluted areas [271]. They have been
shown to uniformly mix surface layers [201,289]
and play a major role in cycling of metals and or-
ganics out of the sediments [113,201,353]. Oligo-
chaetes are a major component of benthic systems
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in many aquatic systems {354} and transport deeper
sediments to the surface as fecal pellets [114,115,
217]. The “aquatic earthworms” used for freshwa-
ter sediment toxicity assessments are limited pri-
marily to Tubifex sp. Tubifex tubifex is considered
as an indicator of organic pollution, particularly in
waters with low dissolved oxygen saturation [271].
Limnodrilus sp. is tolerant of high metal concen-
trations [201]. Lumbriculus has been used in whole
seciment tests to a limited extent [217,355], as have
some other species in Sweden [356].

Oligochaetes represent a large portion of ben-
thic biomass in some systems [356,357]. However,
their usefulness as sediment toxicity indicators has
received mixed reviews [156,356,357]. Their iden-
tification, variable species sensitivity, and fragility
make them difficult to use [356,357]). Wiederholm
et al. [356] followed growth and reproduction of
five species for 0.5 to 1.5 years and found that con-
taminated oligotrophic sediments produced greater
responses and reproduction was a more sensitive
endpoint than growth. Tubifex tubifex survived for
three months in sediments that were acutely toxic
to D. magna; however, Tubifex growth and repro-
duction were inhibited and indicative of in situ
infaunal community structure [156]. Use of Lim-
nodrifus and Stylodrilus 96-h EC50 burrowing
avoidance was a good indicator of contamination
[358]. Tubifex tubifex and Limnodrilus hoffmei-
steri avoidance behavior was observed in Cu- and
Zn-spiked sediments [359]. The oligotrophic Stylo-
drilus heringianus displayed an ability to acclimate
to sediment perturbations such as mixing, and
based on reworking rates, mortalities, and dry
weights showed sensitivity to mixed sediment con-
taminants [360] and endrin-spiked sediments [358].
Water-only exposures (10-14 d) of Acolosoma
headleyi showed Cd had effects on growth. Acute
toxicity sensitivity was similar to other conven-
tional surrogates, but chronic effects were less sen-
sitive [361].

Cladocerans

The importance of cladocerans in aquatic sys-
tems has been well documented since 1883 [271].
They play a significant role in the food web, phy-
toplankton and protozoan dynamics and fish
stomach contents varying from 1 to 95% Cladocera
by volume [271,362]. Some species are selective fil-
ter feeders, while others, for example, D. magna,
are nonselective. An extensive database exists for
pure compound toxicity testing with Daphnia sp.
and its relative sensitivity compared to that of
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other organisms [363]. Daphnia are well recognized
as useful toxicity test species [147,219] due to their
sensitivity to toxicants and ease of culture. In ad-
dition, standard methods exist for effluent and
pure compound testing [364-366], while draft
ASTM methods have been proposed for sediment
assays [367]. These factors and the significant role
Cladocerans have had in aquatic toxicology and
criteria development make them obvious candi-
dates for routine sediment toxicity assessments
[147,219].

Daphnia magna and Ceriodaphnia are plank-
tonic; however, in sediment assays they spend an
extensive amount of time feeding on the sediment
surface [219]. Daphnia magna, a nonselective fil-
ter feeder, ingests sediment particles [75] down to
0.5 wm [368], whether suspended or settled; thus,
in sediment assays it functions as an epibenthic
species. Relative sensitivity of D. magna to a wide
variety of contaminants in whole sediment intersti-
tial water, elutriate, and suspended sediment assays
is well established [18,19,23,24,27,28,74,75,110,
124,139,140,145,147,156,195,205,206,245,247,250].

Fewer assays have been reported with C. dubia
[140,175), which is commonly used in determining
the chronic toxicity of effluents by using the three-
brood (7-d) survival and reproduction test [364}. In
most comparative studies, the acute and chronic
toxicity sensitivity of C. dubia appears to be slightly
greater than that of D. magna [144,175,369]. Some
laboratories have reported occasional culture prob-
lems with C. dubia that can be traced to their water
and food quality requirements [370]. A principal
advantage of C. dubia over D. magna is its rapid
reproductive rate after birth, allowing for sensitive
measures of reproductive impairment within 7 d.
In addition, smaller test volumes are needed for C.
dubia. Reproductive effects may be studied in D.
magna three-brood (7-d) assays by initiating the
test with 5-d-old organisms [219,369,371].

Most sediment assays with the cladocerans have
measured acute toxicity [124,219] in 48-h static {1:4
sediment-to-water ratio) systems. The original
studies and some more recent ones used recirculat-
ing systems to study whole sediment, suspended
sediment, or slurry effects [18,75,110]. In sus-
pended sediment assays, some stress was observed
due to recirculation and high turbidity [110]. The
recirculating systems used lower sediment-to-water
ratios, for example, 1:9.5 [18,219]. Recently sub-
chronic toxicity studies of whole sediments and elu-
triates have been conducted with D. magna and C.
dubia. These assays were static renewal (only over-
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lying water was replaced 1n whole sediment assays)
and measured survival, reproduction, growth, and
pigmentation as endpoints [260,372] These com

parative studies showed the cladocerans to be use-
ful assays, sensitive and discriminatory of a varety
of contaminated sedmments [23,27,124,175,251] It
1s of interest that responses were often similar to
those of benthic species both 1n laboratory assays
and with 1 situ commumnties [139,144,175,245,
251}, as well as m pure compound and ambient
water studies [39,171,363] Many comparative
studies have recommended D magna as an optimal
screening species and as a routine sediment toxic-
ity screening tool [9,27,147,175,219] Responses of
D magna were observed 1 several pure compound
studies to be good predictors of fish responses (r >
88% [373]), poorly related to rambow trout re-
sponses, and similar to responses of P promelas,
or were compound-specific in their similarity with
fish responses [171,374] Responses of D magna n
sediment assays have also been correlated effec-
tively to the concentration of contaminants in
whole sediments, pore water, or those dissolved
from the sediment to overlymg waters [23,27,251]

Isopods

There are about 130 freshwater species of 150
pods {aquatic sow or pill bugs), and little 1s known
of American species {271] They are found primar-
ily 1 shallows of small lakes, streams, and hypo-
rheic, nterstitial, and subterranean waters and
usually are not of importance 1 the diet of fishes
{2711 The only reported sediment toxicity studies
with 1sopods used field-collected Aselfus in whole
sediment recirculating systems [18,19,23,24] Asel-
lus was usually not as sensitive as D magna or H
fimbata [18,19,23,24] A lack of culturing methods
has limited their use 1n toxiaty studies

Amphipods

Approximately 150 freshwater species of
“scuds,” or “sideswimmers,” have been 1dentified
[271] The domunant species are H azteca, Gam-
marus pseudolimnaeus, Gammarus fasciatus,
Crangonyx graciius, and n the Great Lakes, Pon-
toporeia hoyr (now Diporeia sp ) Amphipods are
widely distributed and common 1n unpolluted lo-
tic and lentic systems, however, they are less com-
mon 1n large rivers Hyalella azteca 1s found 1n
waters varying m hardness, pH, and salimty [271,
3751 Amphipods are a primary food source for
fish and voracious feeders of animal, plant, and
detnital matenal {271] The epibenthic species, H
azteca, has been used frequently in sediment tox-
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icity testing [140,175,219,253,259,260,265,266,376]
It has a mummum of mne mstars, with the first five
comprising the juvenile stage and a hife cycle of less
than a year [271] The amphipod juvenile stage of
G pulex 1s more sensitive to sediment contamina-
tion than the adults [267,377] It 1s easily cultured
[219,267,378] Standard methods were recently de-
veloped for whole sediment testing with H azteca
[267] Hpyalella azteca and Gammarus spp have
been used frequently 1n acute toxicity studies of
pure compounds or ambient waters {379,380] and
found to be relatively sensitive m comparative
studies [175,253,381] Pontoporews sp has been
used 1n Great Lakes studies because 1t 1s a primary
benthic species there [15,16,27], unfortunately, it
1s not yet culturable, thus deep-water collections
must be made for testing and tests conducted at
approximately 4°C Extensive use has been made
of P hoyi in bioaccumulation studies [96,143]

Sediment testing with H azteca has consisted
primarily of whole sediment exposures (1 4 ratios
of sediment to water) in static renewal systems for
7-, 10-, 14-, 28-, or 29-d periods [9,140,175,219,
259,267 Suvival 1s most frequently used as the
endpomnt 1n studies, however, i 29-d chronic expo-
sure, growth and reproductive maturation are mea-
sured [253,259]

Pure chemical acute toxicity comparisons with
other common test species, using Cd, NH;, and
phenol, showed Gammarus sp was less sensitive
than the mayfly, Beetis, but more so than two
mudge (C riparws and Limnodrius), the caddisfly,
Hydropsyche, and the flatworm Polycelts [252,377,
381] A data review of 271 chemical toxicities to
57 species showed Gamumarus was a poor predictor
of crustacean or nsect toxicity response [171]
Many of these studies, however, were conducted
on msensitive or unknown life stages, which may
significantly affect sensitivity comparisons Large
juventles to young adults of H azteca and B la-
custris adults were less sensitive than D magna or
C tentans to Cu m sediment spiked sediment 10-d
exposures [74] Hyalella azteca was more sensitive
than D magna to Cd 1n static spiked sediment
tests, and only free Cd contributed to toxicity Re-
duced toxicity was observed in flow-through tests
[259,265] Hyalella azteca was one of the most sen-
sitive and discriminatory of 20 different sediment
toxicity assays in studies of three contaminated
Great Lakes areas [175,253,259], and has been rec-
ommended as a tool to measure acute [219] and
chronic toxicity {9,259,380] Useful chronic toxic-
ity measures have consisted of H azteca growth
(28 d) [259,267] and the Scope for Growth assay G
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pulex which measures energy-absorbed vs. energy-
metabolized (respired) [380,382]. Ingersoll and Nel-
son found survival and growth responses were
similar in exposure periods ranging to 29 d. Sur-
vival decreased in some contaminated whole sedi-
ments with increased exposure time but not in
others [259].

Insects

The mayfly (Ephemeroptera), H. limbata, and
midges (Diptera) such as C. fentans and C. riparius
have been used in sediment toxicity testing. The
nymph stage of H. limbata —the life phase of in-
terest —may last from one to two years [272] with
numerous molts. Most mayfly nymphs are collec-
tors or scrapers with possibly some filtering at the
mouth of their burrow, and have a wide geographic
distribution [272]. The nymphs dwell in tubes and
are exposed in sediment and interstitial and over-
lying waters [383]. They prefer fine-particle-sized,
organically enriched substrates; however, early in-
stars have been observed in coarse-grain sediments
[384]. The Diptera larval stage is primarily aquatic
in all types of waters. Larvae go through four in-
stars before pupation, each about one week in du-
ration [267]. They burrow in the upper 10 cm of
sediment, are omnivorous [267], and are an impor-
tant food source for fish [271].

Hexagenia limbata has been used since the late
1970s in sediment toxicity evaluations [23,27,42,
122,124,219,245,251,385-387] and is sensitive to
the presence of toxicants both in laboratory and in
field surveys [245,251,385]. Most testing has used
field-collected organisms as they are difficult to
culture and may only reproduce once per year or
two. Testing has been done in water, interstitial
water, elutriate, artificial burrows, and whole sed-
iment systems using static, static renewal, and re-
circulating for normally 10-d periods [251,386].
The measured endpoints include mortality, molt-
ing, and avoidance [23,27,175,245,385,387]. Hexa-
geniq has been shown to be more sensitive than
other simultaneously tested species (such as C. fen-
tans, P. promelas, Asellus) [19,24,245], and their
responses correlated with those of other species
[245]. Their responses have also been representa-
tive of contaminant concentrations in the sediment
extracts [24,245], whole sediments [19,28], and
with in situ community profiles [245]. A failure of
acute responses in the laboratory to correlate with
in situ population distributions in contaminated ar-
eas was attributed to comparing acute 10-d expo-
sures with possibly in situ chronic effects [251,383].
Some comparisons showed it less sensitive than D.
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magna [124], but sensitivity was increased with in-
creased exposure time (5-10 d) [251,385]. The bur-
rowing behavior of Hexagenia alters Eh, pH,
organic carbon, and contaminant profiles [122]
and affects overlying water toxicant concentrations
and toxicity to zooplankton [124]. The Interna-
tional Joint Commission (1JC) [9] recommends the
use of Hyalella in sediment evaluations of 14-d ex-
posures at 20°C.

Solid-phase testing with Chironomus sp. was
first reported by Wentsel et al. [20,22]. Unlike H.
limbata, midge can be as easily cultured [219,267,
378] as H. azteca, and there is also a standard sed-
iment test guide available for C. tentans and C.
riparius [267]. Chironomus sp. has been widely
used in water, interstitial water, elutriate, and
whole sediment assays ranging from 48-h to 29-d
exposures [9,40,219,245,253,259,388-393]. Went-
sel et al. measured growth (length) of C. tentans
using early instars in 17-d tests and found re-
sponses were correlated with bulk metal concentra-
tions [20,21]. Emergence of mature larvae was also
related to metal contamination [22]. Ten-day expo-
sures are optimal [219]. The larval stage is the most
sensitive in chironomid life stage, and within that
stage the first instar is the most sensitive for C. ten-
tans and C. riparius, although the second instar is
often used [219,259,267,388,389]. The most com-
mon endpoints include mortality and growth (dry
weight) [219,245]. The 1JC recommends [9] growth
and emergence of C. tentans beginning with a 13-
d-old organism and continuing for 10 d or emer-
gence. Nebeker et al. recommend beginning with
10-d-old organisms and continuing the assay for
15 d [219].

Chironomid sp. may reside in relatively polluted
areas and, as would be expected, are often more
resistant to toxicants than many other test species
[74]. Chironomus riparius is common in the Great
Lakes [272,394]. Sublethal response (growth) was
correlated with Microtox effect concentrations, H.
limbata or D. magna response, benthic community
health, and also discriminated areas of contamina-
tion {139,245]. The primary route of uptake and
resulting toxicity of Kepone was via the interstitial
water and was controlled by organic carbon parti-
tioning [40}. Recent comparative testing found C.
riparius was more sensitive than C. tentans in sev-
eral contaminated whole sediment assays [175,266].
Other tested species include Chironomus decorus
[390] and Paratanytarsus parthenogeneticus [395,
396]. Chironomus sp. has been recommended as a
routine whole-sediment [219) and interstitial-water
[147] toxicity test species.
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Fish

Toxicity testing with fish in sediment systems
has been limited primarily to the fathead minnow
(P. promelas); however, other species have been
used, such as the rainbow trout (S. gairdneri/O.
mykiss), goldfish (Carassius auratus), largemouth
bass (Micropterus salmoides), and bluegill (Lepo-
mis macrochirus) [27,32,397]. P. promelas has a
widespread geographic distribution, it is easily cul-
tured and has been widely used in the development
and validation of water quality criteria [363], pure
compound, and effluent testing [398], standard
methods exist for water exposures [364-366]; it is
an obvious choice for routine sediment testing. A
significant amount of fish testing has focused on
bioaccumulation of sediment-associated toxicants.
These investigations have involved laboratory and
in situ exposures usually ranging from 10 to 28 d
[399]. Method guides have been published for 10-
d sediment bioaccumulation tests of P. promelas
[400]. In addition, fish are the principal focus of
biomarker studies using a wide range of genotox-
icity, biochemical, and histopathological endpoints
indicative of sublethal exposures to sediment con-
taminants [3].

Most sediment testing has been acute exposures
(96 h) to the adult, which is relatively insensitive
[23,250] as compared to early life-stage and full
life-cycle endpoints [255,256]. Norberg-King and
Mount [256] developed a 7-d subchronic larval sur-
vival and growth assay for effluent testing that has
been adapted for sediment extracts {165], elutriate
[268], interstitial water [104], and whole sediment
assays [141,175,261,264,401]. Another 7-d carly
life stage assay developed by Birge et al. [17] begins
with the embryo stage and continues through 3 d
of larval development with endpoints of survival,
teratogenicity, and growth (length). This assay was
used in whole sediment testing [264] and, as the
larval growth assay, has been found to be a useful
and sensitive sediment assay [165,175].

Embryos and larvae are exposed to overlying
water, interstitial water, and ingested sediment
[32]. Because the embryo stage is susceptible to
fungal infections, it is necessary to aerate overly-
ing waters gently [264]. As in the cladoceran whole
sediment assays, larvae tend to feed extensively on
the sediment surface during the test, thereby poten-
tially increasing their exposure to sediment-related
contaminants. Increased uptake of PCB is attrib-
uted to fish’s “mouthing” sediments and desorption
occurring in their buccal cavity [402]. Sediments
are a spawning substrate for many pelagic and epi-
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benthic organisms, so that effects such as reproduc-
tive behavior, hatchability, development (terata),
and growth are critical endpoints to monitor.

Correlations between endpoints and sediment
contaminant levels have been reported in some
studies [32,264] and not in others [23,24,264]. Pure
chemical toxicity data evaluations comparing P.
promelas, rainbow trout, and bluegill showed fish
surrogates were good predictors of fish response
[398] with increasing similarity being related to the
degree of taxonomic similarity [171]. Endpoints in
Zn-contaminated sediment exposures ranked as
teratogenicity, growth, and mortality in order of
sensitivity [165]. Terata EC50s in P. promelas were
four to six times lower than frog embryo terata ef-
fect levels [165]. The cough response in interstitial
water exposures to bluegills was difficult to inter-
pret [27].

Amphibians

A limited number of sediment toxicity studies
of amphibians have been reported [264,397].
Dawson et al. [165] used the frog embryo terato-
genesis assay (FETAX) with Xenopus laevis to
measure sediment extract effects from Zn-contam-
inated sediments. Sediments were extracted for
24 h in reconstituted water at various pH Ilevels.
ECS50 levels for terata were from 2.5 to 3.6 mg/L
Zn at 100 mg/L hardness, 2.0 to 4.2 mg/L for
growth, and 34.5 mg/L for survival. Peddicord
and McFarland [397] exposed Bufo boreas to sus-
pended sediments (2-20 g/L) for 21 d. Whole sed-
iment embryo studies were conducted on the
leopard frog and narrow-mouthed toad (Gas-
trophoryne carolinesis) [32,264]. Tissue concentra-
tions were related to metal exposure but not
mortality, The duration of embryo contact with
the sediment appeared to be an important factor
mediating exposure.

Algae

In lotic and some lentic systems, phytoplankton
are the major primary productivity source [148,403].
Benthic-associated algae (periphyton) dominate
primary production in many streams [191] and
shallow lake regions [99]. The critical role of algae
in ecosystem functioning has been demonstrated
for many years through limiting-nutrient, eutrophi-
cation, and primary productivity studies {362,403].
Algae are also a basic fisheries resource via zoo-
plankton grazing [403,404], provide a major car-
bon source for the sediment microbial food web
[129], and cycle nutrients and toxicants [362,405].
As with microbial metabolic endpoints, photo-
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synthetic organisms frequently show stimulatory
activity in response to nutrients or perhaps alter-
ations of feedback mechanisms [292]. Stimulatory
responses are as useful an endpoint in the assess-
ment process as is inhibition.

Algae have been proposed as surrogates for
plants [147]; however, this generalization is unreal-
istic as shown with herbicide compounds [406]. An
evaluation of the sensitivity of 16 microalgal strains
to 19 compounds revealed that no one species had
commonly observed sensitivity patterns and recom-
mended testing a wide range of taxonomic types
of algae [407). Interlaboratory comparisons of as-
say responses are difficult due to differing meth-
odologies [408]. A review of the freshwater algal
literature found results vary by three orders of
magnitude due to physical and chemical method-
ological parameters. Biomass and gas exchange
differences due to shaking or continuous aeration
effects on CO, limitation and pH were the appar-
ent cause of this variation [408]. This sensitivity to
the test environment reflects the rapid uptake and
metabolism shown to a greater extent in microbial
assays. As with microbial systems, stimulatory re-
sponses may occur and responses also change with
incubation time responses [175]. Temporal effects
are likely due to nutrient limitation, changing wa-
ter quality, toxicant availability, and adaptation
[408,409].

As with the protozoan and rotifer assays, most
sediment quality testing with planktonic algae have
used elutriates, interstitial water, or overlying wa-
ters [147,148,410]. The principal test species has
been S. capricornutum and consisted of the stan-
dard growth assay for 96 h [364]. Other assays with
this species have used 48-h incubation periods [175)
or measured photosynthesis based on “CO, as-
similation during a 24-h period [178,410]. Test bat-
tery studies of pure chemicals, effluents, and
contaminated soils have shown S. capricornutum
to be a sensitive test species [147,411-413].

Other phytoplankton assays that have been ex-
posed to sediment elutriates or overlying waters in-
clude: (a) the algal fractionation bioassay (short
[4 h] and long term [24-96 h]) with natural assem-
blages, in laboratory or in situ exposures, or pre-
cultures of micro- and ultraplankton, where *CQ,
uptake and chlorophyll are measured [15,142,148,
410,414]; (b) microcomputer-based video analysis
of chlorophyll fluorescence (4-h incubation) [142,
148]; (c) microplate ATP analyses [415]; and (d)
flow cytometry measures of cell size or biochemical
integrity [416]. In situ experimental pond studies
showed filamentous algae were the most sensitive
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species in pentachlorophenol-dosed systems [417].
Ponds dosed with trichloroethylene showed de-
creased phytoplankton diversity and increased
abundance [418].

Also reported was whole sediment exposure to
Chlorella vulgaris whereby sediments were care-
fully added to the bottom of the test vessel via tub-
ing, and '*C assimilation was measured [279].

Attached algal (periphyton) communities are
useful indicators of aquatic pollution [157,419-
421], but are infrequently included in studies. See
Steinman and Mclntire [422] for a review of pe-
riphyton community responses and interactions in
disturbed aquatic systems. Shifts in community
structure from pollution-sensitive groups to toler-
ant groups occurred in streams receiving metal
[157,420,421] and organic pollution [420] at low
instream concentrations and showed a response
gradient that was related to contaminant concen-
trations [157,421]. It was evident that EPA water
quality criteria were not protective of 95% of
aquatic life as designed [421]. Community struc-
ture changed from diatoms to green algae, which
are of lower assimilatory efficiency, thus possibly
affecting the higher level consumers [421]. A con-
tinuous flow in situ periphyton bioassay was de-
scribed that measured nutrient limitation by using
chlorophyll and '*CO, uptake {423]. Outdoor ex-
perimental stream periphyton communities were
sensitive to ppb levels of pentachlorophenol, based
on biomass and pigment production [424].

Macrophytes

Duckweed, Lemna sp., a nonrooted, floating,
vascular aquatic macrophyte, has recently been
used with sediment elutriates and whole sediment
assays [175). Lemna minor and Lemna sp. have a
wide geographic distribution and are common in
many lentic environments. L. minor has recently
been proposed as an effluent test species where
frond number and chlorophyll production were the
most sensitive endpoints when compared to the re-
sponses of C. dubia and P. promelas, for some ef-
fluents [425). Laboratory responses of D. magna
and L. minor were correlated with pond mesocosm
responses [426]. Other recommended endpoints
have included root length and 'C uptake [425].

Klaine et al. [427] recently used a rooted aquatic
macrophyte, Hydrilla verticillata, to measure tox-
icity in whole sediment assays with stream and lake
sediments contaminated with a variety of metals
and synthetic organics. Endpoints included root
and shoot length, peroxidase, dehydrogenase, and
chlorophyll. Some sediments showed plant growth
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(root and shoots) to be sensitive to contamination,
while others showed peroxidase activity to be most
sensitive. As with all other photosynthetic system
studies, both inhibitory and stimulatory effects
were observed.

FIELD VALIDATION

As discussed earlier, laboratory manipulations
(e.g., sediment mixing), extractions (e.g., elutriate,
interstitial water), spiking and exposure conditions
(e.g., static vs. renewal vs. flow through, natural
vs. artificial light, whole sediment vs. interstitial vs.
elutriate phase) will often affect toxicity responses
[207,245,428]. In order to meet most study objec-
tives, it is therefore necessary to validate laboratory
responses with some degree of in situ chemical,
physical, and biological monitoring [47,81,144,181,
219]. There are a variety of approaches to address
this validation component of sediment quality as-
sessments [9,35,39,141,181,429]. Validation may
consist of comparisons to historical chemical and
nekton or benthic community survey data, quali-
tative or quantitative biological surveys [9,12,39,
47,144], or in situ toxicity testing [81,238]. At this
point in time, the science necessitates use of some
degree of field validation of biological effects in
which natural factors such as habitat, life cycles,
and spatial and temporal variability are considered.
The importance of this requirement, however, is
not equal at all sites [35]. In severely contaminated
areas, the relative degree of acute toxicity is of lit-
tle matter, and in situ biological impacts are appar-
ent, therefore, validation can be cursory in nature.
However, at each severely contaminated site and
at many other lesser contaminated sites are gray
zones where acute toxicity decreases to sublethal to
chronic effects. Field validations integrate water
column and sediment effects, whereas laboratory
sediment toxicity assays often isolate and measure
only sediment toxicity effects. Realistic and accu-
rate assessments of ecosystem health and sediment
contamination in these areas will have to include in
situ biological validation.

Community structure

Benthic communities have been the most widely
used indicators of aquatic health [39,43,44] and,
more recently, sediment quality indicators [9,430].
These communities are ideal indicators of water-
sediment quality because they are relatively seden-
tary, are comprised of species ranging from
pollution-sensitive to -tolerant, and occupy multi-
ple trophic levels and a myriad of niches involved
in ecosystem functioning [182]. Their life cycles
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(exposure periods) range from hours to years, and
an extensive data base exists to aid study design
and data interpretation [43,430-432]. Because spe-
cies presence/absence and composition are func-
tions of numerous environmental factors such as
varying organism life cycles, storm events, and
habitat requirements, care must be used when at-
tributing effects to pollution [43,52,183]. Many ex-
cellent reviews and references exist that describe
effective approaches for benthic community mon-
itoring [43,201,420,430-435] useful in sediment
toxicity validation.

Other important communities such as microbes,
meiofauna, phytoplankton, zooplankton, and fish
have been used to a lesser degree in evaluations
[4,43,44,142,148,149,359] involving sites that had
contaminated sediments, and links to the sediments
were more indirect than those found with benthic
communities. They are useful in studies dealing
with food chain transfer of pollutants, such as bio-
accumulation processes.

In situ assays

A newer approach in studies of sediment con-
tamination or validation of laboratory results is in
situ assays. These may involve enclosures such as
lake limnocorrals or in situ mesocosms [436-440)
that partition a column of water to the sediment
surface; artificially constructed streams allowed to
colonize with biota indigenous to a nearby stream
[281,438,441-443]; experimental ponds that are
seeded and allowed to colonize with indigenous
species [411,438,440,444,445); placement of caged
species in situ (plankton, mussels, zooplankton,
leeches, fish) [81,148,238,281,289,401,438,439,
446-448]; placement of litter bags or leaf packs in
situ [449-451]; or colonization of artificial sub-
strates by periphyton, protozoa, or macroinverte-
brates [144,175,278,419,451-455].

Of those approaches, few have focused directly
on sediment toxicity effects [238]. The limnocorrals
and experimental ponds have primarily been used
to study environmental fate of pure compounds
such as pesticides and polychlorinated dibenzo-
compounds and have effectively demonstrated the
influence of sediment partitioning and food chain
effects [281,437,456]. As would be expected in test
systems more closely mimicking the real world,
variability is typically greater through time and
between replicates than that observed in more con-
trolled laboratory environments. Carbofuran-
treated ponds containing chambers of indigenous
benthic invertebrates showed acute toxicity at §
pg/L [439]. In general, the trichopteran Limnephi-
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lus was most sensitive, followed by H. azteca.
Gammarus lacustris and C. tentans were more re-
sistant than H. azteca, and the damselfy, Enal-
lagma, was the least sensitive; however, all species
were adversely affected [439].

Artificial substrates (including leaf packs and
litter bags) allow one to study multiple trophic lev-
els from a community structure and function per-
spective with a range of endpoints considered
simple to complex. The uniform test system reduces
habitat (substrate) effects, historical/temporal ef-
fects, and sample collection-laboratory related er-
ror. If one is interested primarily in sediment
toxicity, however, the substrates create an artificial
barrier and, thus, likely underestimate sediment ef-
fects on species that may contact the sediment dur-
ing their life cycle.

An effective way to study single-species effects
of contaminated sediments is possible with in situ
sediment test chambers [238]. This approach was
originally proposed by Nebeker et al. [219]; how-
ever, no studies were published on the in situ
chamber approach until 1991 [238]. The approach
is relatively simple; it removes sampling- and lab-
oratory-induced error from the assessment process
while maintaining in situ conditions whose impor-
tance in determining sediment toxicity might not be
known, such as sunlight, diurnal effects of temper-
ature and oxygen, sediment integrity, spatial and
temporal variability effects, flow-through condi-
tions with site water, resident meio-microfaunal in-
teractions, and turbidity. Significant differences
were observed between in situ and laboratory re-
sponses, with greater sediment toxicity and less
overlying water toxicity occurring in the lab [238].
Site toxicity changed seasonally. Elutriate toxicity
was generally less than that of whole sediment or
interstitial waters, and filtration reduced toxicity
significantly. Recent in situ studies with larvae of
P. promelas [401,448] measured larval weight
change in 7-d exposures. The larvae were more sus-
ceptible than C. dubia to turbidity-storm events
but effectively demonstrated sediment toxicity and
laboratory differences. Limitations to this ap-
proach include possible cage effects and food lim-
itation in long-term exposures; deployment is
difficult in deep or fast-moving waters.

CURRENT APPLICATIONS

The optimal design and use of sediment toxic-
ity tests is dependent on the study objective(s). For
example, use of the standard elutriate [10] as a test
medium may be appropriate in toxicity screening
of dredge materials. However, it is inappropriate if
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considering bedded sediment toxicity due to resus-
pension effects, where the frequency of occurrence,
embeddedness, suspended solid:water concentra-
tion, and exposure duration effects are important
determinants of toxicity and quite different from
an elutriate exposure. Other study objectives for
which sediment toxicity assessments are appropri-
ate and have been used include defining the spatial
extent (both horizontal and vertical) of contamina-
tion, determining sensitive target species and com-
munities, predicting or verifying chemical or dredge
material effects, and serving as components of bio-
monitoring programs.

The state of the art is adequate to fulfill current
study objectives of defining areas of acute toxicity
in severely contaminated sites so that remediation
or dredge material disposal options can be deter-
mined. These studies [140,141,147,175] and other
site characterization assessments [139,268,457,458]
have shown the utility of using sediment toxicity
assays.

The EPA is considering toxicity testing of sed-
iments as a component of several statutory programs
to assist in managing contaminated sediments
[136]. Recently, the EPA developed a sediment
management strategy that affects multiple program
activities such as criteria, effluent guidelines, point
sources (including combined sewer overflows and
storm waters), nonpoint sources, pesticide review,
premanufacture chemical testing, PCB cleanups,
corrective action at solid waste facilities, hazardous
waste landfill remediation, natural resource dam-
ages, ocean disposal, and dredging activities [136].
It may be used in the National Pollutant Discharge
Elimination System (NPDES) by incorporating it
into permit requirements for municipal and indus-
trial effluent discharges [136].

Toxicity identification evaluations (TIEs) are
used by the NPDES program to identify the con-
stituent(s) of the effluent that contribute to its
acute toxicity [39). These procedures are being
modified for use with contaminated sediments and
use interstitial water as the test phase [104]. Am-
monia has been identified as a particularly toxic
component that may frequently be identified in a
TIE as the primary toxicant [104]. Toxicity assays
and/or TIEs can be used in the assessment process
of hazardous waste site remediations at Superfund
sites, Resource Conservation and Recovery Act~
(RCRA-)permitted facilities, or Great Lakes “Areas
of Concern” [136].

Sediment testing has been widely used in eval-
uations of dredge material and mapping of chan-
nel sediment toxicity [458]. Pesticide registration
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and reregistration require environmental fate and
effect studies, which indirectly have addressed sed-
iment toxicity, as have premanufacture reviews of
new chemicals [459]. The EPA Criteria and Stan-
dards Division is developing sediment quality cri-
teria using the equilibrium partitioning (EqP)
approach. Sediment toxicity testing will be neces-
sary to verify the EqP assumptions that interstitial
waters are the primary route for benthic biota;
toxic (bioavailable) fractions can be predicted with
normalization factors such as TOC or AVSs; and
water quality criteria are appropriate for intersti-
tial water and whole sediments, being protective of
benthic and nonbenthic species, community struc-
ture, and ecosystem functioning.

Sediment toxicity testing is also a component of
other integrative approaches where in situ chemi-
cal contamination and biological communities are
measured, in addition to toxicity testing. This ap-
proach may be used to produce sediment criteria or
simply to assess the problem. Integrative ap-
proaches vary and include the apparent effects
threshold and sediment quality triad [39], both of
which were demonstrated effectively in marine sys-
tems [459,460]. The integrative approach is supe-
rior for accurate studies of ecosystem perturbations
because each component assists interpretations and
validation of the other component effects and,
hence, better describes real-world conditions [47].

CONCLUSIONS

The optimal sediment toxicity assay is a relative
measure that will vary between studies and change
with development of new methods. The optimal
assays in 1977 appeared to be those used by Prater
and Anderson [19], demonstrating acute toxicity of
whole sediments to H. limbata and D. magna, and
the chronic assay with C. tentans of Wentsel et al.
[20-22]. In 1991, the decision on an optimal design
is complicated by advances in the science showing
that numerous sensitive species and communities
can be assayed for a variety of time periods in pos-
sibly four phases (whole sediment, interstitial wa-
ter, elutriate, or extractable), under different
exposure conditions (lab vs. in situ, static vs. flow
through, mixed vs. unmixed sediment, and other
varying physicochemical conditions), and monitor-
ing several endpoints of lethal and sublethal toxic-
ity. Undoubtedly, the future optimal assays will be
superior to those available now. However, the cri-
teria that influence the decision of which assays are
optimal —such as What are the study objectives?
What are the resource requirements? What type

G. A. BURTON, JR.

and degree of contamination is to be assessed?
Which assays are standardized, relevant, sensitive,
and discriminatory? —will change little (Table 3).

Other factors important in determining the op-
timal assay have been discussed [284,461] and in-
clude culturing requirements, ecological relevance,
response range, discriminatory ability, replicabil-
ity, and degree of standardization. A standard as-
say should have an adequate data base to provide
quality assurance and control limits and thus de-
crease the artificial influence of the laboratory on
the sample’s toxicity. There is no one optimal as-
say for all assessments of sediment toxicity [462].
There are, however, optimal assays for particular
situations. Acute toxicity testing is adequate for
some situations and can predict ecosystem effects
in cases where contaminants are relatively concen-
trated [175,179]; however, subchronic, chronic,
and in situ testing will likely be required in areas
of lesser contamination to adequately ascertain
whether the ecosystem is being disturbed. Unfor-
tunately, the optimal assay(s) can be proven only
a posteriori, not a priori.

Every test site is a unique ecosystem, and the
toxicity of the sediment will be a function of both
independent and integrative natural factors (such
as patch dynamics) and their biological, physical,
and chemical relationships with the contaminants
(as well as unknown contaminant interactions). It
is essential, therefore, to use multiple assays in the
assessment process, and a tiered integrative testing
approach seems logical [48,152,284,463]. The use
of multiple assays improves the chance of detect-
ing toxicity; however, detection of, or lack of, tox-
icity does not ensure a valid assessment. “No
amount of testing will eliminate all variability, and
some probability of toxicity will have to be ac-
cepted” [171]. The detection of toxicity in the lab-
oratory must be validated by removing the possible
effect of collection-laboratory manipulation and
then relating the effect to an ecosystem perturba-
tion. It is well recognized that the sensitivity level
of an assay is dependent on the toxicant mode of
action, organism toxicokinetics, life stage, and
measured endpoint. However, of equal importance
is determining the appropriate level of sensitivity;
that is, a level that is ecologically relevant (Fig. 2).
This task is difficult, if not impossible at this time,
to determine with confidence and will likely always
be a point of debate. Nevertheless, it should be an
objective of every sediment toxicity assessment.
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